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� A true correlation between NSL data and statistical CO2 emissions was proved.
� Spatiotemporal CO2 emission dynamics at 1 km resolution in China were modeled.
� CO2 emissions from national down to urban agglomeration scales were analyzed.
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a b s t r a c t

China’s rapid industrialization and urbanization have resulted in a great deal of CO2 (carbon dioxide)
emissions, which is closely related to its sustainable development and the long term stability of global
climate. This study proposes panel data analysis to model spatiotemporal CO2 emission dynamics at a
higher resolution in China by integrating the Defense Meteorological Satellite Program’s Operational
Linescan System (DMSP-OLS) nighttime stable light (NSL) data with statistic data of CO2 emissions.
Spatiotemporal CO2 emission dynamics were assessed from national scale down to regional and urban
agglomeration scales. The evaluation showed that there was a true positive correlation between NSL data
and statistic CO2 emissions in China at the provincial level from 1997 to 2012, which could be suitable for
estimating CO2 emissions at 1 km resolution. The spatiotemporal CO2 emission dynamics between differ-
ent regions varied greatly. The high-growth type and high-grade of CO2 emissions were mainly dis-
tributed in the Eastern region, Shandong Peninsula and Middle south of Liaoning, with clearly lower
concentrations in the Western region, Central region and Sichuan–Chongqing. The results of this study
will enhance the understanding of spatiotemporal variations of CO2 emissions in China. They will provide
a scientific basis for policy-making on viable CO2 emission mitigation policies.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction China has been undergoing an accelerated growth in industrial-
Climate warming has become an enormous threat to the natural
environment and human society in the world [1,2]. In addition to
natural factors, global climate warming is closely related to CO2

(carbon dioxide) emissions produced by human socio-economic
activities [3,4]. Over the past century, continuously increasing pop-
ulation and economic development directly induced a high-rise of
CO2 emissions all over the world, especially in rapidly developing
countries [5].
ization and urbanization since the start of its economic reforms in
1978. This growth inevitably leads to a large volume of CO2 emis-
sions that threatens China’s sustainable development and the long
term stability of global climate [6–8], which has raised global con-
cerns. According to 2010 Statistics of the United Nations, China has
surpassed the United States to become the leading country of CO2

emissions in the world [9]. Most importantly, due to industrial
transition and the long-term durative influence of economic
growth, China’s CO2 emissions will increase unceasingly [10]. Yet,
China is encountering intense pressure to reduce its CO2 emissions
[11,12]. Hence, accurately measuring spatiotemporal CO2 emission
dynamics in China is a critical prerequisite for making evidence-
based decisions on where and how to reduce CO2 emissions.
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Previous studies have modeled spatiotemporal CO2 emission
dynamics in China and elsewhere in several ways. For example,
Clarke-Sather et al. [13] estimated inter-provincial inequality in
CO2 emissions in China for 1997–2007. Cheng et al. [10] analyzed
spatiotemporal dynamics and dominating factors of China’s CO2

intensity from energy consumption for 1997–2010. Using logarith-
mic comparison and Kaya identical equation, Gingrich et al. [14]
presented fossil-fuel related CO2 emissions in Austria and Cze-
choslovakia for 1830–2000. However, most previous investigations
in this field have used statistical data based on administrative
units. In spite of their authoritativeness, the statistical data only
provide numeric records of CO2 emissions for an entire administra-
tive unit without showing internal spatial patterns [15]. Due to the
absence of spatial distributions, the spatiotemporal CO2 emission
dynamics within an administrative unit have not been clarified.
Consequently, more efficient and economical methods should be
used to couple with statistical data for mapping spatiotemporal
CO2 emission dynamics [16].

Satellite remote sensing imagery can provide spatial details for
describing the spatiotemporal dynamics of fauna, flora and human
societies [17–19]. Previous studies have demonstrated that the
nighttime light data obtained by the Defense Meteorological Satel-
lite Program’s Operational Linescan System (DMSP-OLS) have a
great potential to estimate socioeconomic indicators [15,16,20–
24,6,25], and thus can be integrated with statistical data for cap-
turing spatiotemporal CO2 emission dynamics [2,26,27]. For exam-
ple, using the DMSP-OLS data and statistical CO2 emissions, Meng
et al. [28] proposed a top-down method to map CO2 emissions at
urban scales. Lu et al. [2] utilized spatially distributed information
from the DMSP-OLS data and a human activity index to test the
hypothesis that counties with similar CO2 emissions were spatially
clustered. Su et al. [9] developed a normalized method for estimat-
ing China’s 19-years CO2 emissions using the DMSP-OLS data and
explored major driving forces for proposing feasible mitigation
policies. While the modeling of CO2 emissions reported in these
studies used a range of methods, most results were derived from
simple regression methods, including linear regression model
[16,25], power regression model [15] and log–log regression model
[19,6]. Due to lack of data verification, the reported regression
between statistical CO2 emissions and nighttime light data could
be spurious [29]. Moreover, simple regression methods merely
quantify the relationship either in spatial dimension, or temporal
dimension, which could result in bias in estimating CO2 emissions
from both spatial and temporal domains.

Panel data analysis is a method of endowing regression analysis
in both spatial and temporal dimensions, which has many advan-
tages over the simple regression analysis [30]. For example, panel
unit root test can examine the stationary nature of the variables
to avoid the spurious regression. A long-run equilibrium relation-
ship between the variables can be determined by a panel co-
integration test. Panel data models also make more sample vari-
abilities and more degrees of freedom available, which can
increase the estimation efficiency [3,31]. Thus, panel data analysis
has enabled researchers to undertake longitudinal and horizontal
analyses in a wide variety of fields, such as economics [32], geog-
raphy [33], politics [34], and education [35].

This study aims to test the utility of modeling spatiotemporal
CO2 emission dynamics in China from DMSP-OLS data using panel
data analysis for 1997–2012. The contributions of this study are
summarized as follows:

� The panel data analysis proved that there was a true positive
correlation between DMSP-OLS data and statistical CO2 emis-
sions in China at the provincial level for 1997–2012.

� CO2 emission dynamics at 1 km resolution in China were mod-
eled using DMSP-OLS data and statistical CO2 emissions.
� CO2 emission dynamics from national scale down to regional
and urban agglomeration scales were identified and analyzed.

The remainder of this study is organized as follows. Section 2
describes the study areas and data sources. Section 3 introduces
the methodology used. Section 4 analyzes the results of panel data
analysis and spatiotemporal CO2 emission dynamics in China. Sec-
tion 5 presents an accuracy assessment and suggestions for China’s
CO2 emission mitigation. The conclusions are given in Section 6.
2. Study areas and data sources

2.1. Study areas

Study areas were selected from three different administrative
levels for multi-scales analysis. The first level is at national scale
(Fig. 1). Since its reform and opening up, China has been experienc-
ing a dramatic increase in gross domestic product (GDP), from 365
billion RMB in 1978 to 51,628 billion RMB in 2012. This enormous
economic growth has led to a large amount of natural resource
consumption, and a vast volume of CO2 emissions. The second level
is at regional scale. Duo to China’s uneven socioeconomic develop-
ment, different economic regions with great disparities of CO2

emissions have been formed. In this study, the entire mainland
of China was divided into three regions (Eastern region, Central
region andWestern region) based on their socioeconomic develop-
ment and geographical position (Figs. 1 and 2). The third level is at
urban agglomeration scale (Fig. 1). Since China’s population
growth and economic development are concentrated in some
urban agglomerations, these regions would contribute most to
CO2 emissions in China. In this study, six typical urban agglomera-
tions, including Shanghai–Nanjing–Hangzhou, Pearl River Delta, B
eijing–Tianjin–Tangshan, Middle south of Liaoning, Shandong
Peninsula, and Sichuan–Chongqing, were selected as study areas.
These urban agglomerations had the higher density of population
and GDP than those of other areas in China. As shown in Fig 2,
the average percentages of population and GDP for 1997–2012
accounted 5.5% and 15% of the China’s total respectively in Shang
hai–Nanjing–Hangzhou. For other urban agglomerations, the aver-
age percentages of population and GDP during the same period
always accounted from 2% to 9% (Fig. 2).
2.2. Data sources

The Version 4 DMSP-OLS Nighttime Lights Time-series
(V4DNLTS) dataset for 1997–2012 was obtained from the National
Oceanic and Atmospheric Administration’s National Geophysical
Data Center (NOAA/NGDC) website (http://www.ngdc.noaa.gov/
eog/dmsp.html). This dataset consists of three data types: the
nighttime stable light (NSL) data, cloud-free coverage and night-
time light data without further filtering. Among the three data
types, the NSL data include lights from country-sides, towns, cities
and other sites with persistent lighting and present the annual
average brightness in units of 6 bits digital numbers (DN) ranging
from 0 to 63. They cover an area of �180 to 180 degrees in longi-
tude and �65 to 75 degrees in latitude, at a spatial resolution of
1 km. In this study, we projected the global NSL datasets into the
Lambert Azimuthal Equal Area Projection, and clipped them to
administrative boundaries of the study areas at different levels.
Since the NSL data were collected by six different DMSP satellites
(F10, F12, F14, F15, F16 and F18), they could not be directly used
to map CO2 emissions due to the lack of continuity and compara-
bility [36–39]. An approach for calibrating time-series NSL data
developed by Cao et al. [40] was employed to reduce the
discrepancies.
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Fig. 2. The average percentages of population and GDP accounted the total in China for 1997–2012 at reginal and urban agglomeration scales.
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Statistical CO2 emissions were estimated from energy con-
sumption data using a unified standard method by the Intergov-
ernmental Panel on Climate Change (IPCC) Guidelines [10,41–43].
This method involved four parameters, including the energy types,
the amount of energy consumption, the average low-order calorific
values (ALC), and the CO2 emission coefficients (CEC). The energy
consumption data were collected from the China Statistical Year-
book and corresponding City Statistical Yearbooks. The ALC were
provided by the China Energy Statistical Yearbook. The CEC were
derived from the National Greenhouse Gas Inventories of the
2006 IPCC (http://www.ipcc.ch). In addition, the administrative
boundary data for provinces, and cities in China were extracted
from National Geomatics Center of China (http://ngcc.sbsm.gov.
cn). A brief description of CO2 emission-related data is listed in
Table 1.
3. Methodology

Modeling CO2 emissions at 1 km resolution using the NSL data
is based on a hypothesis that a more developed area generally
has brighter lights and larger CO2 emissions. In other words, the



Table 1
Description of CO2 emission related-data used in this study.

Data Data description Year Source

Energy consumption data Annual total data (104 t) of eight energy types – coal, coke,
crude oil, gasoline, coal oil, diesel oil, fuel oil and natural gas
– for 30 provinces and 40 cities

1997–2012 China Energy Statistical Yearbook and
corresponding City Statistical Yearbooks

ALC Average low-order calorific values used as parameters to
estimate CO2 emissions (kJ/kg)

2012 China Energy Statistical Yearbook

CEC CO2 emission coefficients used as parameters to estimate CO2

emissions (kgCO2/TJ)
2006 The National Greenhouse Gas Inventories

of 2006 IPCC
Administrative boundaries Shape files of provinces, cities in China 2008 National Geomatics Center of China
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DN value of a pixel is positively correlated to CO2 emissions from
the pixel location on the ground [28]:

NCc ¼ aDc þ b ð1Þ
where NC is estimated CO2 emissions, c is a specific pixel, D is the
DN value of that pixel, a is a regression coefficient, and b is a inter-
cept. Due to lack of the detailed CO2 emissions at the pixel level, we
assumed that the positive correlation between the DN values and
statistical CO2 emissions was constant within a specific province.
Consequently, the statistical CO2 emissions and total nighttime light
(TNL) extracted at the provincial level were used to calculate the
coefficient (a) and intercept (b) for each pixel within a province.

In this study, panel data analysis was adopted to establish a ser-
ies of regression models for estimating CO2 emissions at 1 km res-
olution. With the consideration of the regional difference in
socioeconomic status, industrial structures and energy efficiencies,
we conducted panel data analyses separately at regional scale
(Eastern region, Central region and Western region). The proce-
dures were as follows: firstly, panel unit root tests were conducted
to validate the stationarity of the variables, including statistical
CO2 emissions and TNL at the provincial level; secondly, panel
co-integration tests were used to determine if there were a long-
run relationship between the variables; finally, statistical CO2

emissions were further used to correct the panel regression models
for improving estimation accuracy. These steps are described in
detail in the following sections and presented at the flowchart in
Fig. 3. Descriptions of Step I and II of the flowchart can be found
in the earlier part of data sources section. A natural logarithm
transformation was implemented for all data to avoid
heteroskedasticity and non-stationarity phenomena before con-
ducting panel data analysis.

3.1. Panel unit root tests

While some time series data might present a common change
trend, the sequences in question might not have a direct correla-
tion due to their non-stationary nature [29]. If we conducted a
regression on these series data, the results could be meaningless
despite having a high correlation coefficient value. To avoid this
spurious regression, we examined the stationary nature of the vari-
ables before the panel data models were established [33]. In this
study, two improved panel unit root tests, namely the Levin–Lin–
Chu (LLC) test [44] and the ADF-Fisher test [45], were used to
assess the stationarity of variables.

3.2. Panel co-integration tests

If the results of the panel unit root tests indicated that the vari-
ables were integrated of order one, then the next step was to
employ panel co-integration tests to determine whether a long-
run relationship existed between the variables. In this study, seven
residual-based null of no cointegration panel test statistics that
allowed for heterogeneous intercepts and trend coefficients
across-section were applied [46]. Of these seven statistics, the
panel v-statistic, panel r-statistic, panel PP-statistic and panel
ADF-statistic pool the autoregressive coefficients across different
numbers based on the within-dimension approach. The other three
statistics, including Group rho-Statistic, Group PP-Statistic and
Group ADF-Statistic, pool the residuals of the regression along
the between dimension approach [3]. Detailed description of these
tests and relevant critical values can be found in Pedroni’s paper
[46].

3.3. Panel data models

The regression models of panel data analysis can be categorized
into three types: pooled regression model, variable intercepts and
constant coefficients model, and variable intercepts and variable
coefficients model. The formulas are:

yit ¼ aþ bxit þ lit ði ¼ 1;2; . . . ;N; t ¼ 1;2; . . . ; TÞ ð2Þ

yit ¼ ai þ bxit þ lit ði ¼ 1;2; . . . ;N; t ¼ 1;2; . . . ; TÞ ð3Þ

yit ¼ ai þ bixit þ lit ði ¼ 1;2; . . . ;N; t ¼ 1;2; . . . ; TÞ ð4Þ
where ai is the intercept for specifying as fixed or random effects;
Similarly, bi can also be expressed as a fixed or random effect;
and lit is the error term.

There are two main hypothesis to determine which specific
model should be chosen:

H1 : b1 ¼ b2 ¼ � � � ¼ bN ð5Þ

H2 : a1 ¼ a2 ¼ � � � ¼ aN; b1 ¼ b2 ¼ � � � ¼ bN ð6Þ
Whether or not the hypothesis is accepted is based on F-test. If

hypothesis H2 is accepted, Eq. (2) is selected, otherwise it is neces-
sary to test hypothesis H1. If hypothesis H1 is then accepted, Eq. (3)
is available; otherwise, Eq. (4) is chosen. Next, a critical step is to
choose an effect model (either fixed model or random model),
which has been debated among researchers. This study adopted
fixed effect model that more likely produced reasonable outcomes
under any circumstances [47].

3.4. Estimation and classification of CO2 emissions

Once the linear correlation was confirmed by panel data analy-
sis, it was valid to use the NSL data as a proxy to estimate CO2

emissions at the pixel level. In addition, to limit the errors within
a provincial unit, we further applied the statistical CO2 emissions
of each province to correct the estimated models:

CCct ¼ SCit � ðNCct � NCitÞ ð7Þ
where CC is the corrected CO2 emissions of a specific pixel; SC is the
statistical CO2 emissions, and NC represents the estimated CO2

emissions; c and i are a specific pixel and provincial unit,
respectively.



Fig. 3. Flowchart of methodology for modeling CO2 emissions in China.
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The Natural Break method [48,49] was applied to classify the
spatiotemporal CO2 emission maps. The temporal variation of CO2

emissions for 1997–2012 was classified into four types: no-
obvious-growth, low-growth, moderate-growth and high-growth.
In addition, the average CO2 emissions, whichwere used to quantify
the spatial variations of CO2 emissions for 1997–2012, were
grouped into five grades: low, relatively-low, medium, relatively-
high and high. Note that there are many ways to classify CO2

emissions, The Natural Break method was chosen as the purpose
Table 2
Results of panel unit root tests.

Region Variable Levin–Lin–Chu test

Level

Eastern region CO2 emissions �0.5936
TNL �3.8232***

Central region CO2 emissions 0.3178
TNL �1.6035*

Western region CO2 emissions 4.3427
TNL �2.1909**

* Significant at 10% level.
** Significant at 5% level.

*** Significant at 1% level.
here was to investigate statistical variations in different areas of
China, and it provides the smallest variances between categories,
without influence of artificial factors [48,49].
4. Results

The results of this study are presented in two sections: firstly
the results from panel data analysis at regional level; then the
ADF-Fisher test

First difference Level First difference

�6.5285*** 6.9321 82.1996***

�9.0982*** 19.1979 86.3568***

�4.9525*** 4.4392 31.0069***

�6.4083*** 7.8952 39.0727***

�5.7221*** 8.0881 57.1190***

�7.5972*** 15.1636 68.2183***



Table 4
Parameter estimation by panel data models. Note: due to the data availability,

528 K. Shi et al. / Applied Energy 168 (2016) 523–533
spatiotemporal dynamics of CO2 emissions from national scale
down to regional and urban agglomeration scales.
Qinghai and Tibet are treated as a uniform unit in this study.

Regions Provinces bi ai

Eastern region Beijing 1.3838 21.15581
Tianjin 3.0274 0.379339
Hebei 4.4574 �22.82547
Liaoning 2.9793 �0.39951
Jilin 2.0633 12.46855
Heilongjiang 1.4780 19.67013
Shanghai 1.9083 15.09531
Jiangsu 2.1664 9.43719
Zhejiang 1.6866 16.71677
Fujian 3.6087 �8.714073
Shandong 4.3104 �21.81738
Guangdong 4.3514 �23.38404
Hainan 4.6378 �17.78263

Central region Shanxi 4.0607 �23.3772
Anhui 1.7250 9.5782
4.1. Results of panel data analysis

4.1.1. Results of panel unit root tests
Table 2 lists the results of the LLC test and the ADF-Fisher test.

For LLC test, TNL is stationary at the level in the Eastern region,
Central and Western regions, rejecting the null hypothesis of
non-stationary at less than 10% significance level. CO2 emissions
are not stationary at the level in these three regions. For the ADF-
Fisher test, CO2 emissions and TNL present panel non-stationary
at the level. When the first difference is taken, all variables reject
the null hypothesis of non-stationary at the 1% significance level.
Therefore, CO2 emissions and TNL are integrated at an order of
one which means all the variables are stationary.
Jiangxi 1.1905 16.9392
Henan 3.5061 �16.2779
Hubei 2.3050 2.2554
Hunan 1.6754 10.8823

Western region Inner Mongolia 2.2112 �4.3184
Guangxi 2.3622 �6.7822
Chongqing 1.0703 11.0754
Sichuan 1.2408 8.5371
Guizhou 1.2686 9.0101
Yunnan 2.0361 �2.5321
Shaanxi 2.3973 �7.4711
Gansu 1.4710 5.7147
Ningxia 2.4004 �4.8950
Xinjiang 2.8174 �13.5879
Qinghai 1.5418 5.2496
Tibet 1.5418 5.2496
4.1.2. Results of panel co-integration tests
Table 3 shows that although the Panel v-statistic, Panel

rho-statistic, Panel PP-statistic, Group rho-statistic and Group
PP-statistic of variables accept the null hypothesis of no co-
integration in some regions, the other two statistics reject the
hypothesis in all three regions. We followed Örsal’s findings [50]
that the Panel ADF-statistic performs better than the other six
statistics, and so based our results of panel co-integration tests
on the Panel ADF-statistic. This statistic rejects the null hypothesis
of no co-integration at the 5% significance level and demonstrates
that CO2 emissions maintained a long-term equilibrium relation-
ship with TNL in the three regions during the study period.
4.1.3. Parameter estimation of the panel models
According to the F-test, the variable intercepts and variable

coefficients model was required in this study. The relationship
between TNL and statistical CO2 emissions was expressed by the
individual fixed-varying coefficient model which performed better
than other models. The models for three regions were as follows:

Eastern region:

NCit ¼ �29:9731þ ai þ biTNLit ði ¼ 1;2; . . . ;13; t ¼ 1;2; . . . ;16Þ
ð8Þ

Central region:

NCit ¼ �22:7140þ ai þ biTNLit ði ¼ 1;2; . . . ;6; t ¼ 1;2; . . . ;16Þ
ð9Þ

Western region:

NCit ¼ �14:9188þ ai þ biTNLit ði ¼ 1;2; . . . ;11; t ¼ 1;2; . . . ;16Þ
ð10Þ

in Eq. (8)–(10), the intercepts ai and coefficients bi alter with pro-
vinces, and are listed in Table 4 for calculating CO2 emissions at
the pixel level based on Eq. (7).
Table 3
Results of panel co-integration tests.

Region Panel v-statistic Panel rho-statistic Panel PP-statistic Pane

Eastern region 1.6576** �2.1694** �2.6751*** �3.40
Central region 1.6037* 0.9776 �0.3356 �2.26
Western region 0.8391 �0.5416 �1.4481* �2.63

* Significant at 10% level.
** Significant at 5% level.

*** Significant at 1% level.
4.2. Spatiotemporal dynamics of CO2 emissions

The spatiotemporal dynamics of CO2 emissions in China for
1997–2012 were mapped in Fig. 4. The high CO2 emissions were
clearly identified in coastal region such as the Beijing–Tianjin–Ta
ngshan and Yangtze River Delta, with the low CO2 emissions
mainly located in the rural areas of the Western and Central
regions. Significant spatiotemporal variations in China’s CO2 emis-
sions could be seen clearly increasing and expanding during the
past decades.
4.2.1. Spatiotemporal dynamics of CO2 emissions at national scale
Fig. 5 maps the four types and five grades of CO2 emissions in

China for 1997–2012. The high-growth type was concentrated in
coastal regions, some inland metropolitan areas and developed
cities, including Shanghai, Tianjin, Beijing and provincial capitals
(Fig. 5a). In other words, the growth of CO2 emissions (about
8.6 billion tons) was concentrated in 7.28% of the total area of
China. 92.72% of the total area of China showed no-obvious-
growth types (Figs. 5a and 6a). Moreover, the spatial distribution
of CO2 emissions was very similar to the CO2 emission growth in
China (Figs. 5b and 6b). Most regions in China had relatively-low
l ADF-statistic Group rho-statistic Group PP-statistic Group ADF-statistic

55*** 0.3215 �1.7211** �4.6438***

39** 2.0205 0.2345 �1.3715*

77*** 0.6550 �1.2426 �3.5111***
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Fig. 4. Maps of CO2 emissions in China for 1997–2012. Note: the negative values of preliminary CO2 emission estimation are presented as zero.
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Fig. 5. (a) Temporal variations of CO2 emissions in China for 1997–2012 and (b) spatial variations of CO2 emissions in China for 1997–2012. Note: the negative growth is
viewed as a type of no-obvious-growth.

K. Shi et al. / Applied Energy 168 (2016) 523–533 529
to low grades of CO2 emissions, covering 173,616 km2 (1.84%) and
9,165,063 km2 (96.86%) of the total area of China, respectively. On
the other hand, the high, relatively-high and medium grades were
mainly distributed in coastal regions, covering 0.12%, 0.34% and
0.84% of the total area of China, respectively (Fig. 6b).
4.2.2. Spatiotemporal dynamics of CO2 emissions at regional scale
Fig. 7 contained the areal percentage of each type and grade in

the three regions. The high-growth type was mainly concentrated
in the Eastern region and accounted for 46.56% of the total area of
that type (Fig. 7a). Conversely, no-obvious-growth type was
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Fig. 7. (a) Areal percentage of each type in the three regions and (b) areal percentage of each grade in the three regions.
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mainly located in the Western region and accounted for 74.13% of
the total area of that type. In addition, 49.06% of high grade and
51.05% of relatively-high grade were concentrated in the Eastern
region, with clearly lower concentrations in the Western and Cen-
tral regions. Again, the distribution of five grades of CO2 emis-
sions was relatively uniform in the Central region. In contrast,
the Western region was dominated by low grade emissions
(>72%).
4.2.3. Spatiotemporal dynamics of CO2 emissions at urban
agglomeration scale

During past 16 years, the six urban agglomerations accounted
for 7.75% of the total area in China, yet contributed 37.12% of
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CO2 emissions. Although their CO2 emissions increased continu-
ously for 1997–2012, the differences in growth rates and amounts
were huge. In terms of percentage of total areas, no-obvious-
growth type was 81.97% in Middle south of Liaoning. The growth
of CO2 emissions was 31.41% in Shanghai–Nanjing–Hangzhou
and 17.97% in Pearl River Delta showed a low growth type,
whereas 8.70% of Shandong Peninsula presented high growth type
(Fig. 8a). Moreover, the low grade of CO2 emissions was 94.58% in
Sichuan–Chongqing. Besides, the relatively-low grade of CO2 emis-
sions was 20.14% in Shanghai–Nanjing–Hangzhou and 13.97% in
Pearl River Delta. The Middle south of Liaoning was the urban
agglomeration which had the high CO2 emissions, with the high
grade covering 1.63% (Fig. 8b).
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5. Discussion

5.1. Validation of spatiotemporal CO2 emission dynamics

Panel data analysis proposed in this study utilized NSL data and
statistical CO2 emissions and was found to be an effective way for
timely modeling spatiotemporal CO2 emissions at 1 km resolution
in China. To assess the accuracy of our results, comparisons among
panel data analysis, linear regression model, power regression
model and lg–lg regressionmodel for CO2 emission estimationwere
evaluated in this study. Based on data availability, we collected sta-
tistical CO2 emission data for 1997, 2002, 2007 and 2012 of 40 cities
(Fig.1) which are distributed relatively evenly on the mainland
China, and calculated the total CO2 emissions for each city from
the spatiotemporal CO2 emission maps using different model.
Two indicators were used to evaluate the accuracies of the spatial
distributions of CO2 emissions – the coefficient of determination
R2 and root-mean-square error (RMSE). Fig. 9 shows that: the R2

values between the estimated CO2 emissions from panel data anal-
ysis and statistical CO2 emissions are higher than those from other
models. Figure also tells that panel data analysis produces signifi-
cantly lower RMSEs than those models. These results suggest panel
data analysis performed better than other three models to estimate
CO2 emissions at 1 km resolution in China.
Fig. 9. Accuracy assessment between the estimate
Although the simple regression methods have been widely
applied to estimate CO2 emissions, they should integrate multiple
sources to accurate map CO2 emissions. In addition, these models
could not demonstrate that the positive relationship between
NSL data and statistical CO2 emissions was spurious or true. In this
study, panel data analysis showed that NSL data and CO2 emissions
were integrated at an order of one and exhibited a long-run rela-
tionship, which demonstrated a true correlation between NSL data
and statistical CO2 emissions in China at the provincial level during
the study period. Meanwhile, panel data analysis endowed a series
of regression models to model CO2 emissions efficiently across spa-
tial and temporal dimensions without any ancillary data.

The validity test and comparison analyses have well proved the
ability of the panel data analysis to model CO2 emissions, but some
problems still exist in this study. Firstly, the reliability of the statis-
tical energy data is a key factor influencing CO2 emission estima-
tion. It was reported that estimation of CO2 emissions in China
might be off by as much as 20% [51], with coal consumption
accounting for 71% of the emissions discrepancy [52]. Improving
the reliability of statistical energy data in China would surely
increase the accuracy of the method proposed in this study. In
addition, since the NSL data have a set of shortcomings, such as sat-
uration on bright lights, six bit quantization, there is considerable
rooms for improving data quality, and applying more methods to
d CO2 emissions and statistical CO2 emissions.
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the data correction process [16]. In summary, the NSL data, using
the panel data analysis, provides a new way of understanding spa-
tiotemporal CO2 emission dynamics in China at 1 km resolution
where CO2 emissions have been difficult to estimate due to lack
of the statistical energy data.
5.2. Outlook and suggestions for China’s CO2 emission mitigation

The rapid increase of China’s CO2 emissions not only has a neg-
ative impact on its sustainable development, but also influences
the long term stability of global climate. In this context, Chinese
government pledged to reduce CO2 emission intensity by 40–45%
below the 2005 level by 2020 to reach the international climate
agreement of Copenhagen in 2009. Furthermore, in 2015, more
ambitious target was set by reducing 60–65% of CO2 emission
intensity by 2030 comparing to the 2005 level. The new target
would put a greater pressure on China to substantially reduce its
CO2 emissions, especially in Eastern region. The CO2 emission mit-
igation might compromise the ongoing economic developments in
Central and Western region.

It is definitely a great challenge to Chinese central and local gov-
ernments to achieve above targets without diverting the economic
development. Considering the huge economic gaps among regions,
different mitigation strategies are needed for different regions to
cope with their statuses of economic development. As Eastern
region has already been at a relatively high stage of economic devel-
opment, the mitigation strategies of CO2 emissions can focus on
optimizing the industrial structures. High-tech manufacturing,
financial industries with low energy demanding and low CO2 emis-
sions should be encouraged and supported. High CO2 emission
industries, such asmetal, chemical, mining, and coal powers, should
be replaced or upgraded. The Central andWestern regions are at an
early stage of economic development. It is not feasible and realistic
to completely alter their industrial structures in a short term. It is
probably more effective to reduce CO2 emissions by improving
energy efficiencies of utilization, transformation and recycling pro-
cesses. Besides, corresponding policies and laws should be made to
facilitate CO2 emissionmitigation in all regions. For instance, higher
taxations should be applied to high CO2 emission industries in East-
ern region, while taxation deduction, loan preferences and financial
subsidies should be awarded to industrieswhich developed energy-
saving and low CO2 emission technologies.
6. Conclusions

This study proposedpanel data analysis tomodel spatiotemporal
CO2 emissiondynamicsat ahigher resolution inChinaby integrating
remotely sensed imagery with statistic data of CO2 emissions. This
approach has demonstrated that there was a true positive correla-
tionbetweenNSLdata and statistical CO2 emissions at theprovincial
level from1997 to2012. The spatialmodel effectively estimatedCO2

emissions at the 1 km pixel level. Spatiotemporal CO2 emission
dynamics were evaluated from national scale down to regional
and urban agglomeration scales. The model outputs clearly pre-
sented the great variations of CO2 emissions among different
regions. The high growth type and high grade of CO2 emissionswere
mainly distributed in the Eastern region, Shandong Peninsula and
Middle south of Liaoning, with significant lower concentrations in
the Western region, Central region and Sichuan–Chongqing.

The results of this study will improve the understanding of
regional discrepancies of spatiotemporal CO2 emission dynamics
at the multiple scales, and provide a scientific basis for policy-
making on viable CO2 emission mitigation policies. With the
release of first global Suomi National Polar-orbiting Partnership
(NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime
light composite data at a 0.5 km resolution, further improvement
on spatiotemporal CO2 emission dynamics using panel data analy-
sis becomes possible.
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