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Spectral Information Adaptation and Synthesis
Scheme for Merging Cross-Mission Ocean

Color Reflectance Observations From
MODIS and VIIRS

Kaixu Bai, Ni-Bin Chang, Senior Member, IEEE, and Chi-Farn Chen

Abstract—Obtaining a full clear view of coastal bays, estuar-
ies, lakes, and inland waters is challenging with single satellite
sensor observations due to cloud impacts. Cross-mission sen-
sors provide the synergistic opportunity to improve spatial and
temporal coverage by merging their observations; however, dis-
crepancies originating from the instrumental, algorithmic, and
temporal differences should be eliminated before merging. This
paper presents the Spectral Information Adaptation and Syn-
thesis Scheme (SIASS) for generating cross-mission consistent
ocean color reflectance by merging 2012–2015 observations from
Moderate Resolution Imaging Spectroradiometer and Visible In-
frared Imaging Radiometer Suite over Lake Nicaragua in Central
America, where the cloud impact is salient. The SIASS is able to
not only eliminate incompatibilities for matchup bands but also
reconstruct spectral information for mismatched bands among
sensors. Statistics indicate that the average monthly coverage of
a merged ocean color reflectance product over Lake Nicaragua
is nearly twice that of any single-sensor observation. Results
show that SIASS significantly improves consistency among cross-
mission sensors by mitigating prominent discrepancies. In ad-
dition, reconstructed spectral information for those mismatched
bands help preserve more spectral characteristics needed to better
monitor and understand the dynamic aquatic environment. The
final implementation of SIASS to map the chlorophyll-a concen-
tration demonstrates the efficacy of SIASS in bias correction and
consistency improvement. In general, SIASS can be applied to
remove cross-mission discrepancies among sensors to improve the
overall consistency.

Index Terms—Data merging, Moderate Resolution Imaging
Spectroradiometer (MODIS), ocean color, remote sensing, Visible
Infrared Imaging Radiometer Suite (VIIRS).

I. INTRODUCTION

R EMOTE sensing in an aquatic environment is challenging
due to the negative impacts from aerosols, sun glint,

clouds, and other factors during data collection [1]–[3]. For
this reason, obtaining full clear coverage of the interest area
with single-sensor observation is difficult, particularly over the
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tropical regions where dense cloud cover is frequent. Cross-
mission satellite sensors with similar characteristics provide a
synergistic opportunity to improve spatial and temporal cov-
erage by coalescing multiple mission satellite observations
into a single quality unified product, namely, data merging
[4], [5]. Due to differences in instrument design and retrieval
algorithms, the consistency or continuity among cross-mission
sensors should be investigated before establishing a consistent
data record, particularly when generating a long-term coherent
data record [6], [7]. Considering different focuses in real-world
applications, the most advisable merging scheme is to merge the
primary radiometric products, such as the ocean color remote
sensing reflectance (or normalized water-leaving radiance).
These radiometric products form the baseline information for
deriving all higher level data products to aid in environmental
decision making, even those products that are not included in
the current operational product list [8].

Accurate merging of primary radiometric data products must
account for discrepancies resulting from instrumental (e.g., dif-
ferent sensor design, center wavelengths, and bandwidths), al-
gorithmic (e.g., calibration, atmospheric correction, and aerosol
models), and temporal (e.g., local overpassing time) differences
among cross-mission sensor observations. To address spectral
distortion due to mismatched center wavelengths, an optically
based technique was applied to compute radiometric quantities
at the desired center wavelengths by solving an inverse radiative
transfer problem [9]. In addition, a semianalytical bio-optical
ocean color data merging model was employed to produce
global retrievals of three biogeochemically relevant variables
using the normalized water-leaving radiance from Sea-Viewing
Wide Field-of-View Sensor (SeaWiFS) and Moderate Reso-
lution Imaging Spectroradiometer (MODIS) [10]. By apply-
ing the same bio-optical merging model, observations from
SeaWiFS, MODIS, and Medium Resolution Imaging Spec-
trometer (MERIS) were merged to create a coherent long-time
series of ocean color products under the NASA Ocean Color
MEaSUREs and the ESA GlobColour projects [11]. Statistics
indicate that the merged products have better spatial and tem-
poral coverage than each individual mission; the average daily
global ocean coverage of merged data products is nearly twice
that of any single mission observation. These benefits greatly
promote the application potential of ocean color data merging
approaches.

In addition to these analytical merging models, empirical
methods were also introduced to merge multiple ocean color
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sensor observations. A machine learning technique was used
to eliminate discrepancies among chlorophyll-a (chlor-a here-
after) concentrations derived from MODIS and SeaWiFS to
produce consistent daily global ocean color coverage [12].
Accurate results were obtained for low chlor-a concentrations,
which suggested the potential of this method to eliminate
incompatibility resulting from sensors, such as scan angle
dependencies and seasonal and spatial trends in data. The
noisy and highly dynamic nature of differences between cross-
mission sensors, however, makes empirical methods difficult
to extend this scheme onto new time and space domains dif-
ferent from those used for training in the machine learning
process. Meanwhile, statistical methods such as the multilinear
regression algorithm were also utilized to remove systematic
biases among sensors by projecting the MODIS and SeaWiFS
observations onto the in situ measurements. This correction
scheme improved the consistency between cross-mission sen-
sors with the salient effects at blue bands (i.e., 412 and 443 nm).
Similar approaches were also used to create scientifically re-
liable ocean color climate data records [13], as well as post-
launch radiometric recalibration [14].

The aforementioned approaches, either analytical or em-
pirical, to some extent are all capable of reducing discrep-
ancies among cross-mission sensors to improve consistency.
Nevertheless, these methods still have some limitations. On one
hand, the optical remote sensing techniques require solving a
complex inverse radiative transfer problem. On the other hand
the machine-learning-based methods need abundant relevant
information for data retrieval in addition to the radiometric
products, such as satellite viewing geometry, solar zenith angle,
aerosol optical depth, ozone amount, and water vapor, which is
not always available in association with radiometric products.
Those machine-learning-based methods are highly dependent
on the in situ measurements for cross calibration, whereas long-
term in situ measurements are spatially scarce, which limits the
broad applications of these machine-learning-based methods on
a large scale.

At present, these in situ measurement-based cross-calibration
schemes can only remove the systematic bias resulting from
the instrumental and algorithmic differences among sensors. In
other words, they cannot account for the location-dependent
bias related to hydrodynamic factors. For example, the bias be-
tween two cross-mission sensors would not be the same at two
different locations in one lake if one measurement is located
in the outflow with strong advection of water mass, whereas
the other is located in the center of lake with small dynamics.
This bias is also difficult to measure due to the stochastic nature
embedded in the temporal difference among sensors.

In regard to the merging of primary radiometric products,
previous approaches only considered merging observations
at the common bands, meaning that some valuable spectral
information was abandoned during the merging process. For
example, no observation is recorded at 531-nm wavelength by
VIIRS, but observations are recorded in the MODIS product as-
sociated with this band. To preserve the unique spectral charac-
teristics at this wavelength while merging VIIRS with MODIS,
spectral information at 531 nm should be reconstructed from
available neighboring bands in VIIRS observations [15]. Al-
though band-shifting methods are able to address this issue,

it still requires to use the complex bio-optical model in some
occasions [16].

In this paper, a new method called Spectral Information
Adaptation and Synthesis Scheme (SIASS) was developed to
overcome the barriers described above. The strength of SIASS
is the development of a generalized scheme for bias correction
between cross-mission sensors, relying on their common obser-
vations collected during the overlapped time periods. With the
aid of SIASS, cross-mission discrepancies are removed without
using any in situ measurements other than sensors common
observations. Compared with previous methods, SIASS is able
to not only eliminate incompatibilities between the common
bands but also reconstruct spectral information for those mis-
matched bands among sensors. Practical implementation of the
SIASS method was confirmed by applying it to merge cross-
mission ocean color reflectance observations from MODIS
and VIIRS over Lake Nicaragua during the time period of
2012–2015 in this study.

II. DATA AND METHODS

A. Study Area and Data Sources

Lake Nicaragua was chosen as the study area because of its
location in a tropical region where dense clouds are present
throughout the year (see Fig. 1). This lake is the largest fresh-
water lake in Central America, with an area of 8264 km2. The
two general seasons are the dry season from November to April
and the wet season from May to October. Statistics show that
dense cloud cover is mainly observed during the wet season,
with an annual average cloud cover of nearly 70% [17]. As the
lake has been considered as a future drinking water source by
the Nicaragua government and several other Central American
countries, monitoring biophysical parameters to characterize
water quality conditions and pollution levels in this lake on a
near-real-time basis is thus critical.

Traditional manual sampling of water quality parameters is
labor-intensive and costly, as well as incapable of capturing
vast spatial variability simultaneously. To provide instantaneous
insight into the phenomena of interest with a large spatial cov-
erage, daily recorded satellite ocean color observations should
be used. Currently, several satellite sensors, mainly MODIS
aboard the Terra (1999–present, MODIS-Terra hereafter) and
the Aqua (2002–present, MODIS-Aqua hereafter), as well
as VIIRS aboard the S-NPP (2011–present), are orbiting the
Earth with a capability of monitoring the ocean color and
inland waters (see Table I). These sensors map the Earth on
a daily basis at a moderate resolution. The general performance
and accuracy of ocean color products derived from MODIS-
Aqua, MODIS-Terra, and VIIRS evaluated in the literature
indicate comparable accuracies between the sensors at most
wavelengths [18], [19]. To have sufficient samples for the
present study, the common Level-2 ocean color reflectance
observations over Lake Nicaragua collected from these three
sensors during the 2012–2015 overlapped time period were
used without flag filtering. The quality control measure was
limited to remove all negative values from these reflectance
products. These radiometric products have previously been
radiometric and atmospheric corrected to remove remaining
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Fig. 1. Location of Lake Nicaragua.

TABLE I
CHARACTERISTICS OF MODIS AND VIIRS OCEAN COLOR REMOTE

SENSING REFLECTANCE PRODUCTS. THE LEVEL-2 OCEAN COLOR

REFLECTANCE DATA OF MODIS-TERRA, MODIS-AQUA, AND VIIRS
USED IN THIS STUDY WERE ACQUIRED FROM THE NASA OCEAN

BIOLOGY PROCESSING GROUP (OBPG)

effects of solar orientation and atmospheric attenuation due
to scattering and aerosols [1], [20], [21]. To unify the spa-
tial resolution, VIIRS ocean color reflectance observations
were resampled to the MODIS resolution (i.e., 1000 m) us-
ing the SeaWiFS Data Analysis System (SeaDAS) package
(version 7.1) during reprojection processes. Both MODIS and
VIIRS ocean color reflectance observations were mapped onto
the UTM-16N projected coordinate system along with the
WGS-84 geographic coordinate system.

B. SIASS Method

The main objective of SIASS is to remove cross-mission
biases among sensors for better image fusion. Common ob-

servations between successive generations of sensors during
the overlapped time period provide a synergistic opportunity
for sensor intercomparisons [22]. With this advantage, biases
across missions can be quantified and then removed to improve
consistency among cross-mission sensor observations. An ob-
servation from one sensor can be calibrated to be consistent
with the other sensor by removing the systematic bias and
the associated location-dependent bias. Following this basic
theory, the SIASS is designed to eliminate biases between
cross-mission sensor observations for wavelengths in the syn-
chronized bands while reconstructing spectral information for
wavelengths of mismatched bands. Generally, for each pixel
over a geographical grid (i.e., a geographical grid is a squared
area to pinpoint any location on Earth with unique geographic
information (latitude/longitude), and it is always referred to
as a pixel in remote sensing) common to cross-mission sen-
sors, the cross-mission ocean color reflectance bias at wave-
length λ (denoted by ΔRrs(λ) hereafter) is assumed to mainly
consist of two portions, the sensor-dependent systematic bias
(ΔRrsSAT(λ)) and the location-dependent bias (ΔRrsLCT(λ)),
i.e.,

〈ΔRrs(λ)〉 =
〈
ΔRrsSAT(λ)

〉
+

〈
ΔRrsLCT(λ)

〉
(1)

where 〈 〉 denotes the ensemble mean.
The rationale of the SIASS method mainly exploits an

adaptive bias correction scheme to remove aforementioned
systematic bias and location-dependent bias among sensors
simultaneously via the proper integration of spectral feature ex-
traction, quantile–quantile (Q–Q) adjustment, empirical mode
decomposition (EMD), and extreme learning machine (ELM).
The systematic bias can be processed through spectral feature
extraction and Q–Q adjustment in sequence, and the location-
dependent bias may be removed by using EMD and ELM as
a whole. Within the systematic bias correction, spectral feature
extraction is designed to process a handful of pixels with no
cloud contamination and retrieve the major spectral informa-
tion generating two referenced data sets for both baseline and
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Fig. 2. Schematic flowchart of the cross-mission ocean color reflectance
merging scheme with SIASS.

complementary satellite sensors, respectively, from which the
bias correction relationship may be signified. Given any ob-
served data set, the systematic bias can be eliminated by the
Q–Q adjustment globally based on the two relevant referenced
data sets. Because the decomposition of the EMD is based
on the local characteristic time scale of the data, it can be
applied to analyze some nonlinear and nonstationary processes
in hydrodynamic environments and help for addressing the
location-dependent bias. After the systematic bias correction,
EMD is applied to remove white noise-like high-frequency fluc-
tuations embedded in the two pairwise time series systematic
bias-corrected reference data sets and to reconstruct them into
new data sets for location-dependent bias correction. Finally,
ELM is applied to build relationships between the pairwise
reconstructed data sets to eliminate the location-dependent bias
pixel by pixel.

Here, a schematic flowchart is presented to demonstrate the
SIASS procedure applied to merge ocean color reflectance from
three cross-mission satellite sensors: MODIS-Terra, MODIS-
Aqua, and VIIRS (see Fig. 2). For a set of three sensors,
one of them must be chosen as the baseline, while the oth-
ers are complementary. In other words, observations collected
by the remaining sensors must be projected to be consistent

with the observations up to the baseline sensor level. The
baseline sensor can be screened by using three predetermined
criteria. The purpose is to maximize the spatial coverage of
clear pixels (i.e., pixels having valid observation values) in
the lake before merging cross-mission ocean color reflectance
from three sensor observations. First, any single sensor that
can show the highest number of clear pixels should have a
comparative advantage. Second, any pairwise sensors (MODIS-
Aqua and MODIS-Terra, abbreviated as AT hereafter; MODIS-
Aqua and VIIRS, abbreviated as AV hereafter; MODIS-Terra
and VIIRS, abbreviated as TV hereafter) that may contribute to
more clear pixels with a higher coverage ratio collectively may
gain more comparative advantage. Finally, with such three pair-
wise settings (i.e., AT, AV, and TV), the smaller the difference
between ocean color reflectance observations at the common
band (i.e., the same wavelength and 443 nm in this study)
among sensors (i.e., lower relative biases between sensors), the
more the comparative advantage.

A graphical sketch of the SIASS method for bias correction
is presented in Fig. 3. According to the predetermined criteria
as described above, MODIS-Aqua is selected as the baseline
sensor, whereas MODIS-Terra and VIIRS are selected as the
complementary satellite sensors. For those mismatched bands
between baseline and complementary satellite sensors, two
bands in the same neighborhood of complementary sensors may
be selected as an alternative to simulate and generate the same
band information. As an example, two VIIRS bands may be
projected to a relevant band of MODIS-Aqua for bias correc-
tion. For the purpose of demonstration, two bands associated
with VIIRS and one band associated with MODIS-Aqua were
used in Fig. 3 (see Fig. 3, top) to illustrate how the new band
information can be generated by removing associated bias. The
four key methods in SIASS can be delineated in a greater detail
as follows.

1) Spectral Feature Extraction: In the image screening step
for both the baseline and complementary satellite sensors,
each clear pixel within the overlapped time period may be
screened out for the construction of a reference time-series
database. The reference time-series database for each pixel
may have a good memory effect of the hidden patterns of
systematic bias so that the cumulative distribution function
(cdf) can be computed for holistic consideration of bias cor-
rection. By picking up the candidate pixels for adjustment
one by one over the entire study region, the individual cdf
associated with candidate pixel values over the study period
can also be generated. When addressing each pixel on a rolling
basis, the bias correction for the entire study region may be
achieved stepwise by using the Q–Q adjustment to eliminate
systematic bias.

Before the generation of each cdf curve, spectral feature ex-
traction must be performed using singular value decomposition
(i.e., a signal processing scheme) to create a reference time
series for subsequent characterization of bias among sensors
(see Fig. 3, bottom). The reference time series is the first
principal component (PC) of all matchups in the overlapped
study time period and regions. Following (4)–(12), each pixel
time series can be fully corrected to eliminate the systematic
bias through the Q–Q adjustment (see Fig. 3, middle).
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Fig. 3. Graphical sketch of the core operation of the SIASS method for bias correction.

2) Q–Q Adjustment: As aforementioned, systematic bias
(i.e., ΔRrsSAT(λ)) results mainly from instrumental and algo-
rithmic differences among sensors. Ideally, this bias is nearly
consistent and thus can be quantified through the sensor inter-
comparisons. The simple way to characterize this systematic
bias is to calculate the average differences through a matchup
analysis, indicated as

ΔRrsSAT(λ) =
1

N

N∑
i=1

(
RrsSAT1

i (λ) − RrsSAT2
i (λ)

)
(2)

〈
ΔRrsSAT(λ)

〉
=

1

T

T∑
t=1

(
RrsSAT

t (λ)
)

(3)

where i denotes the number of matchups among sensors on the
same date, and N is the total number of i. t denotes the time
(day number), and T is the total number of t.

In practice, due to different instrumental response func-
tions and the degradation of sensors along with the time, this
bias cannot be always consistent. Therefore, simply adding
the average differences cannot eliminate discrepancies among

cross-mission sensors; on the contrary, new biases could be
introduced. To overcome this weakness, we adopted the Q–Q
adjustment method, an adaptive method originally proposed to
calibrate the projected regional climate model outputs to the
observed local scales [23]. This method has proven effective in
calibrating model projections of climate parameters, such as air
temperature [24] and precipitation [25].

Similarly, this theory can be adopted to calibrate cross-
mission sensor observations to reproduce observations from
one sensor (i.e., complementary satellite sensor) based on the
given data from the other sensor (i.e., the baseline satellite
sensor). Here, the Q–Q adjustment is utilized to characterize
the sensor-dependent systematic bias. Based on the Q–Q ad-
justment theory (see Fig. 4), one observation from VIIRS (i.e.,
RrsobsVi ) can be calibrated to the MODIS-Aqua level by adding
the associated cross-mission bias [ΔRrs, formulated in (1)]
between these two sets of sensor observations pixel by pixel,
which can be modeled as

RrsprjAi = RrsobsVi +ΔRrsi (4)
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Fig. 4. Illustrative example of the Q–Q adjustment method for calibrating
cross-mission sensor observations. Observations from one sensor (solid black
contour) can be calibrated to the other sensor level (dashed black contour)
by removing associated biases, which can be characterized from common
differences between cross-mission sensor observations during the overlapped
time period (blue and red contours).

where RrsprjAi is the projected observation after bias correction,
and i is the ith percentiles in cdf’s of RrsobsV. In Fig. 4, refer-
enced VIIRS time-series data stand for common observations
of VIIRS after the treatment of spectral feature extraction dur-
ing the overlapped time period with MODIS-Aqua. Similarly,
referenced Aqua time series stand for common observations of
MODIS-Aqua after the treatment of spectral feature extraction
during the overlapped time period with VIIRS. Observed VIIRS
time-series data stand for raw VIIRS observations with no
further treatment. Projected Aqua time-series data stand for
projected data at the Aqua level from the observed VIIRS
observations.

In ΔRrsi, the associated systematic bias at the ith percentiles
(ΔRrsSAT

i ) can be expressed as the sum of the mean radiomet-
ric shift (Δ̄) plus the corresponding deviation Δ′

i, i.e.,

ΔRrsSAT
i = gΔ̄ + fΔ′

i (5)

where

Δi = RrsrefAi − RrsrefVi (6)

Δ̄ =
1

N

N∑
i=1

Δi = RrsrefA − RrsrefV (7)

Δ′
i = Δi − Δ̄ (8)

g =

(∑N
i=1 RrsobsVi

)
/N(∑N

i=1 RrsrefVi

)
/N

=
RrsobsV

RrsrefV
(9)

f =
IQRRrsobsV

IQRRrsrefV

(10)

IQRRrsobsV = RrsobsV|p=75% − RrsobsV|p=25% (11)

IQRRrsrefV = RrsrefV|p=75% − RrsrefV|p=25%. (12)

Terms IQRobsV
Rrs and IQRRrsrefV in (10)–(12) are the interquar-

tile ranges of the observed and referenced observations, re-

spectively, calculated as the differences between the 75th (p =
75%) and 25th (p = 25%) percentiles.

In this paper, RrsrefA and RrsrefV were derived from the
matchups of common observations of both sensor observations
after the spectral feature extraction. The basic underlying theory
is that induced discrepancies due to instrumental and algorith-
mic differences may be memorized along with the time, which
can be characterized from the long-term historical observations
(see Fig. 3, bottom panel). From (5)–(12), it is observed that
ΔRrsSAT

i is mainly modulated by g and f ; if g = f = 1,
ΔRrsSAT

i would be a special case in which only Δi is added to
RrsobsVi without any further adjustment. To avoid uncertainty
that might result from outliers in observations, the median
values of RrsrefA and RrsrefV instead of the ensemble mean
were used to calculate the average radiometric shift Δ̄ in (7).
Similar values were applied in (9) to calculate the factor g
as well.

By adopting the Q–Q adjustment method, systematic bias
ΔRrsSAT at all common bands among sensors can be greatly
mitigated. Because this adjustment method is based totally
on observations, it can thus be utilized to synthesize spectral
information for mismatched bands, such as the band at 531-nm
wavelengths between MODIS and VIIRS. To achieve this
goal, for instance, observations from two neighboring bands of
VIIRS (i.e., 486 and 551 nm) can be employed as the baseline
information for possible reconstruction.

3) EMD: Due to the highly dynamic nature of aquatic envi-
ronments, time series of ocean color reflectance from different
sensors at one particular pixel on the same date might not agree
well with each other. The temporal differences among sensors
could result in changes of the spectral characteristics in an
aquatic environment because of bio-optical and biochemical
processes, as well as water mass advection. The work in [26]
revealed semidiurnal to diurnal fluctuations of concentrations of
suspended sediment and phytoplankton in Tampa Bay, Florida,
through coastal buoys and satellite observations. In other words,
these time series will be too chaotic to build reliable relation-
ships, even with advanced machine learning tools. Although
these fluctuations do exist in those ocean color reflectance
observations, to some extent, these high-frequency fluctuations
might be referred to as white noise that could be removed to
better characterize long-term relationships.

Toward the end to removing the white noise-like fluctuations,
EMD was applied to reconstruct the projected time series in
this study. Unlike the well-known Fourier transform, which
requires linear and stationary data to avoid energy spreading in
energy–frequency domain, EMD can decompose any nonlinear
and nonstationary time series into a finite and often small num-
ber of intrinsic mode functions (IMFs) that admit well-behaved
Hilbert transforms [27]. The decomposition is based on the
direct extraction of the energy associated with various intrinsic
time scales, and the IMFs are extracted level by level from the
highest frequency local oscillations riding on the corresponding
lower frequency part of the data until no complete oscillation
can be extracted in the residual. In other words, the first IMF is
one time series with the highest frequency oscillations included
and thus can usually be considered the white noise, which
must be removed. Therefore, the reconstructed time-series data
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set can be produced by adding all remnant IMFs together,
except the first one. The reconstructed time series instead of
the projected time-series data set is used to characterize the
location-dependent relationships among sensors with the aid
of ELM.

4) ELM: After removing the systematic bias, location-
dependent bias ΔRrsLCT(λ) must also be addressed. As pre-
viously described, ΔRrsLCT(λ) at one geographic grid could
be different from the others; therefore, relationships should
be analyzed individually for each particular pixel. Traditional
methods such as linear regression could be the simplest ap-
proach; however, the significant dynamic nature of an aquatic
environment prevents linear regression from building reliable
relationships with sufficient accuracy. In this paper, a fast ma-
chine learning tool, i.e., ELM, was utilized to establish complex
relationships among sensors that can be used to estimate the
location-dependent bias at each geographical grid.

ELM was proposed to improve learning speed and accuracy
via the single-hidden feedforward neural networks (SLFNs)
[28]. Unlike traditional machine learning algorithms that re-
quire adjusting and tuning all parameters in SLFNs, the input
weights and hidden layer biases in ELM can be randomly
assigned if the activation is infinitely differentiable with the
unchanged hidden layer output matrix [28]. The randomly
chosen input weights and bias concepts enable ELM to directly
respond to the inputs and rapidly find a solution without the iter-
ative adjustment required in gradient descent-based algorithms.
ELMs can provide universal generalization and classification
performance, not only with the smallest training error but
also with the smallest norm of weights at extreme learning
speeds that can be thousands of times faster than traditional
feedforward network learning algorithms, such as backward
propagation algorithms in artificial neural network modeling
analysis. Consequently, ELMs can be easily implemented in
various applications. In this paper, ELM was utilized to ex-
plore the complex relationships between the systematic bias-
corrected time series and associated observed Aqua time series.
Once a reliable relationship is characterized, it can be used to
correct the location-dependent bias.

III. RESULTS

A. Screening and Ranking of Baseline Sensors

Before the implementation of any cross-mission sensor ob-
servations merging scheme, baseline sensors must first be se-
lected through screening and ranking steps. To achieve this,
one sensor must be selected as the target, whereas the other
sensors remain complementary, providing observations to be
projected onto this target sensor level successively. In this pa-
per, ocean color reflectance derived from three satellite sensors
(i.e., MODIS-Terra, MODIS-Aqua, and VIIRS) were employed
for possible data merging purposes. To determine the baseline
sensor among these three sensors, two statistics addressing the
three predetermined criteria in above were calculated among
sensors as quantified indicators (i.e., average monthly cov-
erage percentage and average monthly mean absolute bias;
see Figs. 5 and 6, respectively). Average monthly coverage

Fig. 5. Average monthly coverage (POC) during the 2012–2015 time period
for the four possible combinations of these sensors. The combinations of
sensors are identified by the letters associated with each individual sensor (AT:
Aqua+Terra, AV: Aqua+VIIRS, and ATV: Aqua+Terra+VIIRS).

Fig. 6. Monthly mean absolute bias (MAB) of observed ocean color re-
flectance at 443 nm among sensors. Combinations of sensors are identified
by the letter associated with each individual sensor: Terra (T), Aqua (A), and
VIIRS (V).

percentage (i.e., POC) was calculated as the ensemble mean
of daily clear pixels coverage percentage (POC) over the lake
each month, i.e.,

POC = 100 ∗ Nclear

Ntotal
(13)

POC =
1

T

T∑
t=1

POCt (14)

where Nclear is the number of clear water pixels (i.e., having
data value), and Ntotal is the total number of water pixels over
the lake. Similarly, the average monthly mean absolute bias
(MAB) was calculated as the average of the mean absolute bias
(MAB) between clear pixel matchups among sensors, i.e.,

MAB = 100 ∗ 1

N

N∑
i=1

∣∣RrsSAT1
i − RrsSAT2

i

∣∣ (15)

MAB =
1

T

T∑
t=1

MABt. (16)

The benefits of merged cross-mission sensor observations
are intuitive (see Fig. 5). Compared with any single-sensor
observations, the POC of merged products over Lake Nicaragua
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Fig. 7. First PC (PC1) and associated ocean color reflectance time series of MODIS-Aqua (531 nm) and VIIRS (488 and 551 nm). A-PC = PC1 of MODIS-Aqua;
V1-PC = PC1 of VIIRS at 488 nm; V2-PC = PC1 of VIIRS at 551 nm. (a) VIIRS at 488 nm. (b) VIIRS at 551 nm. (c) Aqua at 531 nm. (d) PCs.

is nearly twice that of any single-sensor observations. Regard-
ing the POC of a single-sensor mission, VIIRS has a slightly
larger POC than that of MODIS, particularly during dry seasons
(November–April). Meanwhile, the POC of merged products
between any two sensors indicates that merging VIIRS with
any MODIS observations to gain a larger coverage ratio would
be beneficial. This can be inferred from the larger POC of AV
and TV compared with that of AT. Within this context, VIIRS
has priority than MODIS to be selected as the baseline sen-
sor. However, comparisons of MAB between any two sensors
indicate that better agreement can be achieved by choosing
MODIS-Aqua as the baseline sensor to merge with other two
sensors. This selection can be deduced from smaller MAB
of AV and AT when comparing with that of TV. By taking
MODIS-Aqua as the baseline sensor, the other two sensor
observations are all needed to be projected onto the MODIS-
Aqua level, which avoids addressing extreme biases between
MODIS-Terra and VIIRS (e.g., large biases of TV; see Fig. 6).
Therefore, considering the spectral (i.e., number of available
bands) and overpassing time differences (see Table I), as well
as the statistics of coverage ratio and relative biases between
sensors, observations derived from MODIS-Aqua were selected
as the baseline information for merging with observations from
VIIRS and MODIS-Terra successively over Lake Nicaragua.
In the merging scheme, VIIRS observations were first merged
with those of MODIS-Aqua, and the merged products were

further merged with observations from MODIS-Terra. In addi-
tion, observations from MODIS-Aqua were reserved without
any correction or computation. Only those grids having no
information (i.e., no data value) in MODIS-Aqua (but with
values in other sensors) were projected from other two sensors
observations and then merged with those of MODIS-Aqua.

B. Systematic Bias Correction

In this paper, the Q–Q adjustment method was adopted
to remove systematic bias among sensors. As described in
Section II-B, historical time series of ocean color reflectance
RrsSAT were utilized as references for systematic biasΔRrsSAT

i

characterization. Here, all available observations of each sensor
over Lake Nicaragua during the 2012–2015 overlapped time
period were used to derive the relevant reference time series.
To merge observations at MODIS 531-nm wavelengths, obser-
vations from two VIIRS bands at 486- and 551-nm wavelengths
were used to generate the associated spectral information of
531 nm at the MODIS-Aqua level. Matchups between MODIS-
Aqua and VIIRS bands were first extracted from both historical
time series, respectively (denoted by pixels in Fig. 7). For this
purpose, all historical images were ranked from high to low
based on the number of matchups between both sensor observa-
tions for each date; as more observations recorded at different
days were included, the number of matchups decreased. To
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Fig. 8. Comparisons of ocean color reflectance before and after systematic bias correction. (a) Time series of observed RrsVIIRS(488) (OBS-V1),
RrsAQUA(531) (OBS-A), and projected time series (PRJ_A1) from OBS-V1. (b) CDFs of each time series in (a). (c) Same as in (a) but from RrsVIIRS(551)
(OBS-V2). (d) CDFs of each time series in (c).

better characterize the systematic bias among sensors, sufficient
matchups should be sampled. Here, one criterion was created
as time was increased one by one until the number of matchups
among sensors in the time series was < 1% of the maximum
number of matchups (i.e., the number of pixels on the first date
in the ranked time series).

To simplify the work and avoid unnecessary uncertainties,
PCs of these observations were computed via singular value
decomposition, and PCs were then utilized as reference time
series for the Q–Q adjustment rather than using the chaotic
raw time series. Statistics indicate that the PC1 of these ob-
servations can explain almost 95% of the total variance; there-
fore, PC1 of each sensor observation should be applied as the
historical reference in the Q–Q adjustment for systematic bias
characterization. Because the correction scheme is totally data
dependent, large outliers in the reference time series would thus
introduce uncertainties and new biases. To obtain a quality-
assured correction, a quality control approach was applied.
After calculating the PC1 of each observation (e.g., V1-PC, V2-
PC, and A-PC in Fig. 7), the absolute bias between V-PC and
A-PC was computed accordingly, i.e.,

Biasi = 100 ∗ |V-PCi − A-PCi|
A-PCi

(17)

where i is the number of days in the extracted discrete time
series. For quality control purposes, data points with val-
ues larger than the total average plus one standard deviation

(i.e., > 95% in cdf’s of the PC bias) of the whole bias time
series may be first screened out; associated data points in the
PC time series in those corresponding days with large bias may
then be removed.

Following the aforementioned screening steps and quality
control assessment (see Fig. 7), only 54 days of observations
were reserved for further systematic bias characterization, sug-
gesting an urgent need for data merging over this region to
improve the relevant spatial and temporal coverage of ob-
servations in turn. Comparisons of the derived PC of each
sensor suggest that although the fluctuations of each sensor
observation are different, the long-term variability (i.e., trends)
is still similar to each other. This process is the foundation for
conducting the cross-mission sensor bias correction.

Once the referenced time series (i.e., PC time series) data
are created, the Q–Q adjustment method can be adopted for
systematic bias correction among sensors. Following (5)–(12),
observations collected by one sensor can be calibrated to the
other based on the referenced time-series data. For instance,
a comparison of RrsVIIRS(488) and RrsVIIRS(551) before
and after being projected to RrsAQUA(531) indicates that the
systematic bias among sensors can be largely removed by
adopting the Q–Q adjustment method (see Fig. 8). This can
be evidenced by the fact that the cdf of projected time series
(PRJ_A1) is almost overlapped with that of RrsAQUA(531)
after bias correction [see Fig. 8(b)]. In addition, it is indicative
that the projected time-series data are not a simple transition
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Fig. 9. Comparisons of the time series before and after reconstruction. Here, PRJ denotes projected time series in Fig. 8 (A1 is associated with VIIR 488
nm, and A2 is associated with VIIRS 551 nm), whereas REC denotes reconstructed time series. (a) Reconstructed from the projected time series I (PRJ_A1).
(b) Reconstructed from the projected time series II (PRJ_A2). (c) Reconstructed from Aqua 531 nm (OBS_A). (d) Reconstructed time series.

from the original raw data by adding the average differences
between two referenced time series [e.g., the differences are
not consistent between time series before and after systematic
bias correction in Fig. 8(c)]. During the Q–Q adjustment, minor
corrections were made for observations with small values,
whereas large corrections were made for large values at band
551 nm of VIIRS, reflecting a reasonable correction logic. This
is due to the different instrumental responses or algorithmic
differences in dealing with extreme values associated with dif-
ferent sensors. Large biases occur mainly for those peak values
between VIIRS and MODIS-Aqua observations [see Fig. 8(c)];
therefore, it is an advantage of using such an adaptive method
such as Q–Q adjustment for correcting systematic biases among
cross-mission sensor observations.

C. Location-Dependent Bias Correction

Once the systematic bias can be removed from each particu-
lar pixel, relationships can be established between the projected
time series and the associated target sensor time series for
possible removal of the embedded location-dependent bias at
this grid. Due to the highly dynamic nature of aquatic environ-
ments, the original reflectance time series are always nonlinear
and nonstationary, with fluctuations randomly distributed (e.g.,
similar to white noise). As described in Section II-B, building
a robust model for prediction with those chaotic time series is
difficult, regardless of which method is chosen. With the aid

of EMD, these fluctuations are screened out in the first IMF,
which has the highest frequency along with the lowest energy.
Thus, removing these high-frequency signals may not affect the
long-term variability of the original signals; rather, it would
improve the stability and efficiency in model generalization.
Comparisons of the time-series before and after reconstruction
via EMD clearly show that the reconstructed time-series data
are much smoother after removing those high-frequency fluc-
tuations than the original projected time series; however, the
reconstructed time series still maintain their original long-term
variability (see Fig. 9).

With the reconstructed time series, ELM is used to establish
relationships for removing the possible location-dependent bias
ΔRrsLCT. In this paper, reconstructed MODIS-Aqua time-
series data were defined as targets, whereas reconstructed time
series of the projected observations (from VIIRS or MODIS-
Terra) time-series data were used as inputs for machine learning
purposes. We randomly screened 70% of these reconstructed
time-series data for ELM training, whereas the remnant was
used for testing purposes (i.e., model validation). The stopping
criterion for training was created based on the coefficient of
determination (i.e., R2) between the predicted value for the
remaining 30% of inputs and the associated targets. The train-
ing process continues until the R2 value reaches 0.8. Once a
robust model is generated, it may then be used for prediction
based on the given new observations. To avoid random simula-
tion and improve robustness, multiple models were simulated.
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Fig. 10. Comparisons between the observed and simulated data for 400 pixels at 531 nm on January 10, 2014. OBS_V1 denotes the observations from VIIRS at
488 nm and OBS_V2 for 551 nm; OBS_A are the observations from MODIS-Aqua at 531 nm. (a) Aqua 531 nm vs. VIIRS 488 nm. (b) Aqua 531 nm vs. VIIRS
551 nm. (c) Aqua 531 nm vs. synthesized. (d) Scatter plot of (c).

In this paper, 30 trials were simulated for each particular
pixel.

Normally, ELM performs at an extremely fast speed. In
some extreme situations, however, such as cases for pixels with
limited observations in the time series, ELM might fail to gen-
eralize a robust model due to data deficiency; consequently, no
prediction can be generated. In this situation, a systematic bias-
corrected data value may be assigned directly, which means
no location-dependent bias correction is conducted for this
geographical grid. In addition, after 30 trials, the mean of this
predicted value is calculated to represent the final prediction
performance at each geographical grid.

D. Experimental Results

1) Spectral Information Synthesis: To verify the efficacy
of SIASS, experimental analyses were conducted for spectral
information synthesis (such as VIIRS 488 and 551 nm) at mis-
matched bands, as well as spectral adjustment at the common
bands. In this paper, the validation scheme was performed by
applying SIASS to reconstruct 400 observed MODIS-Aqua
ocean color reflectance in one image from associated VIIRS
and MODIS-Terra observations on January 10, 2014. These
400 data points (i.e., pixel values) were extracted from a 20 ×
20 clear scene in each sensor observation. Spectral information
of two adjacent projected VIIRS bands with wavelengths of

488 and 551 nm were synthesized to generate observations
at MOIDS-Aqua 531-nm wavelengths (see Fig. 10). Before
applying SIASS, distinctive biases were found between VIIRS
and MODIS-Aqua observations. MODIS-Aqua at 531 nm over-
estimated by almost twice that of VIIRS at 488 nm, whereas the
VIIRS at 551 nm slightly overestimated that of MODIS-Aqua at
531 nm. Inconsistent biases (e.g., small bias for minimum; large
bias for maximum) between observations from MODIS-Aqua
531 nm and VIIRS 551 nm also indicate the complexity of bias
correction among sensors, arising mainly from the nonlinear
and nonstationary nature of biases among sensors. These incon-
sistencies might result from instrumental responses, algorith-
mic differences, and calibration uncertainties, as well as aquatic
dynamics due to local overpassing time differences of satellite
sensors. However, the synthesized time-series data from VIIRS
488 and 551 nm largely avoid relevant issues as mentioned
earlier.

Fair agreement can be observed between sensor measure-
ments and reconstructed spectral information at 531 nm [see
Fig. 10(c)], which strongly supports the efficacy of the SIASS
method and indicates that the SIASS is capable of removing
the prominent nonlinear and nonstationary biases. The syn-
thesized spectral information from neighboring bands preserve
the unique spectral characteristics of these mismatched bands,
which are valuable for better monitoring and understanding the
changing aquatic environment. This advantage distinguishes
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Fig. 11. Comparisons between the observed and simulated data for 400 pixels at 443 nm on January 10, 2014. Observations from VIIRS at 443 nm were used to
simulate the associated spectral information at MODIS-Aqua 443 nm. (a) Aqua 443 nm vs. VIIRS 443 nm. (b) Scatter plot of (a). (c) Aqua 443 nm vs. simulated.
(d) Scatter plot of (c).

SIASS from other similar bias correction schemes that may lose
some valuable spectral information because they only work for
the common bands among sensors. Prior to the development
of SIASS, this weakness could largely be avoided by using
complex bio-optical models or band-shifting processes [10],
[11], [15], [16].

2) Spectral Information Adaptation: For the common bands
among sensors, observations are calibrated from one sensor to
the other through similar processes such as reconstructing spec-
tral information for those wavelengths in mismatched bands;
this process is thus termed as spectral information adaptation.
The only difference between adaptation and synthesis schemes
is that only one-band observation instead of two is used as
input. Comparisons between the observed and projected spec-
tral information from different sensor observations at different
wavelengths (see Figs. 11–13) suggest that the consistency
between sensors is significantly improved after correction, with
the largest effects at 443 nm.

Comparisons of observations from different sensors at the
same wavelength (e.g., 443 nm) indicate that the biases result-
ing from the temporal differences might be most significant
when compared with other biases resulting from instrumental
and algorithmic differences. In addition to the uncertainties
in absolute radiometric calibration processes between sensors
(see Table I), the only difference between MODIS-Terra and

MODIS-Aqua is nearly 3 h local overpassing time differences;
other factors (e.g., instrument design, wavelengths, and algo-
rithm) are similar. Nevertheless, the RMSE between MODIS-
Aqua and Terra [see Fig. 13(b)] is much larger than that
between MODIS-Aqua and VIIRS (instrumental, algorithmic,
and small temporal differences existed). The possible reason
for this might result from the highly dynamic nature of aquatic
environments, which is sensitive to temporal differences with
significant short-term temporal variability [26].

Similar effects can also be observed at 531 nm. Synthe-
sized data from two VIIRS observations (see Fig. 10) agree
even more closely than those of projections based directly on
MODIS-Terra observations (see Fig. 12). However, because of
inherent synthesis variability, bias-corrected data still follow the
original observation variability. This effect was also evident in
comparisons of R2 before and after calibration. Values of R2

were not greatly improved even after calibration, and in some
cases, they were even reduced. Although R2 could not provide
meaningful insights, to some extent, the results suggest that the
corrected data are still dependent on the original observations,
particularly the variability.

To confirm the consistent improvement of ocean color re-
flectance before and after the spectral information adaptation
with SIASS, the mean relative difference (MRD) was calculated
pairwise for ocean color reflectance observations between
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Fig. 12. Comparisons between the observed and simulated data for 400 pixels at 531 nm on January 10, 2014. Observations from VIIRS at 443 nm were used to
simulate the associated spectral information at MODIS-Aqua 531 nm. (a) Aqua 531 nm vs. Terra 531 nm. (b) Scatter plot of (a). (c) Aqua 531 nm vs. simulated.
(d) Scatter plot of (c).

MODIS-Aqua and either of the two other satellites, as well as
the simulated data, i.e.,

MRD = 100× 1

N

N∑
i=1

RrsSAT1
i − RrsSAT2

i

RrsSAT2
i

(18)

where RrsSAT2
i denotes the ocean color reflectance observa-

tions from MODIS-Aqua; RrsSAT1
i denotes observations from

MODIS-Terra or VIIRS or simulated ocean color reflectance;
and N is the number of samples in each satellite observation.
The associated MRD values derived from the results (see
Figs. 10–13) were comparatively summarized (see Table II).

Before applying SIASS, apparent discrepancies (or inconsis-
tencies) were observed between MODIS-Aqua and the other
two satellites, particularly at 443 nm (see Table II). VIIRS sig-
nificantly underestimated ocean color reflectance observations,
whereas MOIDS-Terra significantly overestimated these values
relative to the MODIS-Aqua. Therefore, correcting these large
cross-mission biases is essential before merging observations
associated with these three platforms. The largest correction
effect was confirmed at 443 nm, with an MRD < 1% after
applying SIASS.

3) Application of Mapping Chlor-a Concentrations: A real-
world application of SIASS was performed to map the chlor-a
concentrations in Lake Nicaragua using NASA’s operational

chlor-a algorithm of MODIS (i.e., OC3M), which is an empir-
ical fourth-order polynomial relationship derived from in situ
measurements of chlor-a and blue-to-green band ratios of ocean
color reflectance [29], [30], i.e.,

Cchlor−a = 10

(
a0+

∑
4

i=1
ai∗Ri

)
(19)

R = log10

(
Rrs443 > Rrs488

Rrs551

)
(20)

where the sensor–unique coefficients of a0−a4 are 0.2424,
−2.7423, 1.8017, 0.0015, and −1.2280, respectively. The nu-
merator in (20) specifies retrieval of the greatest value (i.e.,
maximum) of the band ratios between Rrs443 and Rrs488.

To compute chlor-a concentrations, observations of Rrs443,
Rrs488, and Rrs551 over Lake Nicaragua were retrieved from
MODIS-Aqua, MODIS-Terra, and VIIRS, respectively, on
December 5, 2013. By applying SIASS, merged ocean color
reflectance products at these three distinctive wavelengths were
generated (see Figs. 14–16, respectively). These maps show
that the spatial coverage ratio of MODIS-Aqua observations
over Lake Nicaragua was significantly improved by merging
with VIIRS and MODIS-Terra successively. Before merging,
MODIS-Aqua had a clear coverage ratio of 35.28% of the
lake. The coverage percentage was improved to 67.97% after
merging with VIIRS, nearly twice that before merging, and
increased to 83.63% after coalescing with observations from



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 13. Comparisons between the observed and simulated data for 400 pixels at 443 nm on January 10, 2014. Observations from MODIS-Terra at 443 nm were
used to simulate the associated spectral information at MODIS-Aqua 443 nm. (a) Aqua 443 nm vs. Terra 443 nm. (b) Scatter plot of (a). (c) Aqua 443 nm vs.
simulated. (d) Scatter plot of (c).

TABLE II
COMPARISONS OF MRD BETWEEN PAIRWISE OCEAN COLOR

REFLECTANCE FROM THE CROSS-MISSION OBSERVATIONS

BEFORE AND AFTER SPECTRAL ADAPTATION WITH SIASS

MODIS-Terra finally. Some obvious uncertainties remain in the
merged products, particularly after merging with observations
from MODIS-Terra at blue band (443 nm). This effect might
result from the quality-unassured observations (i.e., we did not
filter the satellite observations with flags) and aquatic dynamics
due to large temporal differences, as well as biases arising
from ELM model simulations in characterizing the possible
relationships to remove the corresponding location-dependent
bias.

Following the empirical relationships in (19) and (20), chlor-a
concentrations were derived and mapped (see Fig. 17), showing
that high concentrations of chlor-a were mainly observed in
the mid-west coast of the lake, whereas low concentrations
were observed in the central lake. Over some geographic grids,
the chlor-a concentrations were slightly lower than those at

adjacent grids, mainly due to overestimation of observations
at the two blue bands in the correction scheme, particularly at
443 nm, where two distinctive patches with large values were
observed in the southern areas of the lake. In addition, large
outliers were observed over the northeast of the lake, which is
classified as a large extreme value present in regions based on
observations from MODIS-Terra. These outliers might result
not only from the quality-unassured ocean color reflectance
observations but also from the large temporal differences as-
sociated with aquatic dynamics, both of which possibly cause
failure of chlor-a concentration retrieval. Despite these possible
uncertainties, the merged products significantly improve the
spatial and temporal coverage by combining observations from
available cross-mission sensors. This merging scheme allows
us to better monitor and understand the dynamics of aquatic
environment by deriving biophysical parameters that can be
utilized as water quality indicators.

IV. DISCUSSION

Discrepancies between cross-mission ocean color radiomet-
ric products can be largely explained by the differences re-
sulting from instrumental to algorithmic and temporal aspects,
such as sensor design, calibration, atmospheric correction, data
processing, and short-term aquatic variability due to different
local overpassing time of sensors. Significant biases arising
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Fig. 14. Comparisons of MODIS-Aqua ocean color reflectance before and after merging with VIIRS and MODIS-Terra at 443 nm on December 5, 2013. The
original observations of each sensor are shown in the upper panel, whereas the merged observations are shown in the bottom panel. (a) MODIS-Aqua. (b) VIIRS.
(c) MODIS-Terra. (d) MODIS-Aqua. (e) MODIS-Aqua fused with VIIRS. (f) MODIS-Aqua fused with VIIRS and MODIS-Terra.

from these differences should be eliminated before merging
these cross-mission sensor observations. Differing from meth-
ods relying on complex bio-optical models and scarce in situ
measurements to eliminate these discrepancies, SIASS is pro-
posed in this study to manage these biases for possible merging
purposes.

Two kinds of biases, sensor-dependent systematic bias and
location-dependent bias, were managed between cross-mission
sensor observations. The sensor-dependent systematic bias, ab-
breviated as systematic bias, mainly results from the instrumen-
tal and algorithmic differences among sensors. An important
assumption here is that the variability of this bias remains un-
changed or has few changes over time. This bias can therefore
be characterized based on the common observations recorded
at the overlapping time window among sensors. SIASS uses
this advantage to remove the systematic bias among sensors
using an adaptive statistical adjustment method (i.e., Q–Q
adjustment method). Results indicate that this adjustment can
mitigate the systematic bias between radiometric observations
from cross-mission sensors significantly. Nevertheless, some
concerns must be highlighted. As aforementioned, we assume
that the systematic bias remains unchanged or has few changes
along the time horizon; however, sensor degradation (i.e., sen-
sitivity drifting) could introduce new uncertainties to the ad-
justment process. Because the adjustment is highly dependent
on the cdf’s of sensor observations, different weights would
be assigned to the same pixel for adjustment as the degraded

observations might alter the distribution of cdf’s. This adaptive
adjustment scheme is also dependent on the amount of common
observations. The more sensor common observations, the better
the accuracy. With a limited number of observations, the calcu-
lated cdf’s of observations could have large intervals, which, in
turn, might result in large uncertainties when quantifying those
factors for bias correction in (5)–(12). Therefore, to achieve
a quality-assured calibration, sufficient common observations
should be guaranteed. In addition, biases are mainly character-
ized through distribution mapping between the observed and
two reference time series. The Q–Q adjustment method requires
that these time series have the same number of samples to
guarantee fair intercomparisons. In our study case, the observed
time series has one more data point (i.e., the one to be projected)
than the two referenced time-series data. Although this does not
seem to change the cdf’s of the observed time series apparently,
some uncertainties might be introduced. Within this context, the
method should be slightly modified to avoid this issue in the
future.

Unlike other linear or nonlinear models used for band-shifting
purposes, spectral information at mismatched wavelengths in
one sensor can be reconstructed based on observations from
two neighboring wavelength observations in the other sensor
through the Q–Q adjustment method. This spectral information
synthesis scheme not only works for the band-shifting purposes
for the same sensor but is also capable of generating associated
spectral information from different sensors. Increased spectral
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Fig. 15. Comparisons of MODIS-Aqua ocean color reflectance before and after merging with VIIRS and MODIS-Terra at 488 nm on December 5, 2013. The
original observations of each sensor are shown in the upper panel, whereas the merged observations are shown in the bottom panel. (a) MODIS-Aqua. (b) VIIRS.
(c) MODIS-Terra. (d) MODIS-Aqua. (e) MODIS-Aqua fused with VIIRS. (f) MODIS-Aqua fused with VIIRS and MODIS-Terra.

Fig. 16. Comparisons of MODIS-Aqua ocean color reflectance before and after merging with VIIRS and MODIS-Terra at 551 nm on December 5, 2013. The
original observations of each sensor are shown in the upper panel, whereas the merged observations are shown in the bottom panel. (a) MODIS-Aqua. (b) VIIRS.
(c) MODIS-Terra. (d) MODIS-Aqua. (e) MODIS-Aqua fused with VIIRS. (f) MODIS-Aqua fused with VIIRS and MODIS-Terra.
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Fig. 17. Chlorophyll-a (chlor-a) concentrations derived from ocean color reflectance at 443, 488, and 551 nm on December 5, 2013 based on the NASA’S
operational chlor-a algorithm OC3M. (a) MODIS-Aqua. (b) MODIS-Aqua fused with VIIRS. (c) MODIS-Aqua fused with VIIRS and MODIS-Terra.

information may provide valuable data sources for subsequent
data mining purposes, which can help us better monitor param-
eters related to the quality and status of aquatic environment,
such as chlor-a concentration.

The location-dependent bias could be affected by the hy-
drodynamics in the highly complex aquatic environment due
to the advection of water masses and the local overpassing
time of the satellite sensors. Similarly, we assume that these
aquatic dynamics have little variability in each particular pixel
of a geographical grid, which means that dynamics varying
with time can differ for different grids but should remain
unchanged or have few changes for the same grid. Statistical
relationships are estimated between sensor observations and
are then employed to predict the bias-corrected value based
on given new observations in this bias-correction scheme. Due
to the dynamic nature of aquatic environments, time series
of radiometric observations with chaotic fluctuations such as
white noise are always present, making it difficult to generalize
a robust relationship with fair accuracy, even with advanced
machine learning tools. Within this context, a signal processing
method, i.e., EMD, was applied here to remove the white
noise-like fluctuations embedded in the time-series data for
building relationships. This method, to some extent, improves
the performance by quickly generalizing a robust model for
location-dependent bias corrections.

Finally, ELM, a machine learning tool with an extremely
fast speed in learning processes, was implemented to establish
possible relationships that account for the location-dependent
bias. For most cases, ELM performed well in generating a
robust model to characterize the possible location-dependent
bias among sensors, but it might fail in some cases, particu-
larly when few matchups were available for training purposes.
Consequently, for this situation, the established ELM model
cannot be considered as a robust one for data prediction pur-
poses. In some cases, the predicted value deviates far from
the anticipated one if the given input falls out of the normal
range of data utilized for model training, evidenced by ex-
periencing a negative value or a value 10 times larger than
the normal value. In this paper, quality control was applied to
avoid such large outliers. Pixels with a predicted value > 1.5
times or < 0.5 times the given inputs must be masked as no

predicted value available at this grid and given a flag of NaN
(i.e., Not a Number). Moreover, due to stochastic weights and
bias assignment schemes in ELMs, different solutions can be
achieved for the same problem. To some extent, these possible
drawbacks reduce overall accuracy, which can be seen from the
scattered matchups between the observed and corrected data
(see Figs. 11–13). This issue also limits the applications of this
ELM method to deal with some extreme cases (e.g., pixels with
few observations in the historical time-series data). Meanwhile,
multiple trials can be conducted by using the ensemble means
of these robust predictions to represent the overall prediction
accuracy. In addition, other possible methods, such as the
second highest value [31] and the modified maximum average
[32], also can be utilized to optimize the predicted multiple
results for possible accuracy improvements.

Considering all possible causes of spectral discrepancies at
similar wavelengths between sensors, the temporal differences
might be more salient than others. This finding can be con-
firmed by the direct comparison among results given the fact
that the associated biases between the MODIS-Aqua and Terra
are even larger than those between MODIS-Aqua and VIIRS,
since MODIS instruments aboard Terra and Aqua have the
same design and data processing algorithms, and thus, the bi-
ases between these two MODIS sensor observations should ide-
ally be smaller than those between MODIS-Aqua and VIIRS,
which have different instrumental design and data processing
algorithms. On the contrary, biases between MODIS-Aqua and
VIIRS are even smaller than those between MODIS-Aqua and
MODIS-Terra. Hence, this effect might be attributed to the
temporal differences in local overpassing time among sensors,
which is larger between MODIS-Aqua and Terra than that be-
tween Aqua and VIIRS. In addition to the temporal differences,
discrepancies could result from uncertainties during calibration
and retrieval processes as well. Aquatic environments, however,
are highly dynamic compared with terrestrial environments.
Inner dynamic factors, such as water mass advection as well as
biochemical and biophysical processes, combined with external
forcing factors such as wind, could synergistically alter the
variability of an aquatic environment and affect the quality
of remote sensing products. The challenge of remote sensing
in an aquatic environment is not just limited to the temporal
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differences that cause dynamics and a weak signal-to-noise
ratio; it is also due to the chaotic characteristics in an aquatic
environment, which make it difficult to statistically predict and
handle these differences among sensors.

As SIASS mainly employs common observations among
sensors to characterize and remove the systematic and location-
dependent biases, it only addresses the long-term common
biases between sensors. Consequently, uncertainties and biases
might remain in the bias-corrected products, particularly for
days when observations are sampled during highly dynamic
periods of the aquatic environment. In these situations, SIASS
could not eliminate all the biases based on the historical mem-
ories, and some biases are thus preserved in the simulated
products.

Although the spatial and temporal coverage of merged prod-
ucts derived from biases-corrected observations via SIASS can
be improved significantly, it is still difficult to achieve a full
clear coverage of the study area in some cases. To restore that
missed spectral information, information reconstruction meth-
ods such as SMart Information Reconstruction (SMIR) [17],
Neighborhood Similar Pixel Interpolator (NSPI) [33], Geo-
statistical Neighborhood Similar Pixel Interpolator (GNSPI)
[34], and Weighted Linear Regression (WLR) integrated with
a regularization method [35] can be applied to further recover
the missing information toward a full clear coverage of study
regions.

In addition, back to the original data source used in this
study, due to the limited valid satellite ocean color reflectance
observations over the study area (resulting from severe clouds
contamination), no flag filtering was applied to the original
observations before further computation. Thus, uncertainties
might exist in some of these observations. Although those
uncertainties do not seem to affect our study objectives, biases
might be introduced into the simulated ocean color reflectance
products due to error propagation. We therefore advise exclud-
ing those quality-unassured observations through flag filtering
in real-world operational applications.

V. CONCLUSION

By taking advantage of temporal overlaps between suc-
cessive generations of satellite sensors, an adaptive statistical
method, i.e., SIASS, was proposed in this study to remove
the systematic and location-dependent biases between cross-
mission ocean color sensors for observation merging purposes.
With the aid of the Q–Q adjustment method and a machine-
learning-based correction scheme, SIASS was able to remove
the instrumental- and algorithmic-related systematic biases, as
well as location-dependent bias. Compared with previous meth-
ods using complex bio-optical models and scarce in situ mea-
surements for possible bias correction, SIASS is more adaptive
as it relies on common observations from cross-mission sensors
solely. This advantage makes the SIASS technique transferrable
and applicable to include any other satellite sensor observations
with similar features in various occasions.

Differing from previous merging schemes that only consider
observations from the common band observations between

cross-mission sensors, SIASS can also synthesize spectral in-
formation for those wavelengths in mismatched bands at one
sensor based on observations in two neighboring bands col-
lected from the other sensor. This spectral information synthesis
scheme helps preserve more spectral characteristics, allowing
us to better monitor and understand the changing aquatic envi-
ronment. Increased spectral information provides essential data
sources for data mining purposes, which can be used to derive
some distinctive indicators that are provided in the operational
products.

Experimental results in this study suggest that SIASS is able
to remove biases among cross-mission sensors significantly
with accuracy. Final merged data products have better spatial
and temporal coverage than any individual sensor. This advan-
tage resolves the drawback of data scarcity in some regions such
as the tropics, where dense cloud cover is frequent and hinders
the successive monitoring of water quality in inland waters and
coastal regions.
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