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Mapping Vegetation-Covered Urban Surfaces Using
Seeded Region Growing in Visible-NIR Air Photos

Jianhua Zhou, Yan Huang, and Bailang Yu, Member, IEEE

Abstract—Unreliability involved in the extraction of shaded
vegetation-covered surfaces (VS) is a common problem in urban
vegetation mapping. Serving as a solution to it, a novel method
named Nonlinear Fitting-based Seeded Region Growing (NFSRG)
is explored. With NFSRG, a series of classified results are orga-
nized by a seeded-region-growing process. In order to adapt to the
variable separability between VS and background, the growing
is limited in several weighted buffers defined by some nonlinear
fitting relationships. When searching new VS members (member
means both pixel and patch) within such a buffer, a gradually
reduced weight makes the buffer width continually narrowed as
the separability worsens. To avoid unexpected entrances of water
and smooth shaded background members, a during-growing con-
straint, named expansion rate, is proposed. Accuracy assessments
reveal that more than 96% of VS members can be accurately
extracted by the proposed method.

Index Terms—Classification, seeded region growing, shadow,
urban, vegetation.

I. INTRODUCTION

U RBAN VEGETATION is an important component of
urban ecosystems and performs significant environmen-

tal, recreational, and aesthetic functions [1]. Existing studies
have revealed that the layout and abundance of urban vegeta-
tion significantly influence boundary-layer climates at local and
micro-scales [2], [3]. Thus, timely and accurate information on
the layout of urban vegetation is important for urban environ-
ment modeling, ecological benefits assessment, and horticulture
planning, etc.

Several types of vegetation indices, such as the Normalized
Difference Vegetation Index (NDVI) and soil-adjusted vege-
tation index (SAVI), are commonly used to derive vegetation
information [4]–[6] and to evaluate ecological benefits [7] typ-
ically with moderate-resolution remote sensing data. When the
derivation is in downtown area at individual tree level, the
extremely high heterogeneity of vegetation details and their
surroundings may lead to significant uncertainties over the
deriving accuracy [8]. Therefore, high spatial resolution (e.g.,
IKONOS, Quickbird, and aerial photography) [9]–[12] and
high spectral resolution (e.g., hyperspectral scanner) [13] data
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have been utilized for urban VS mapping. Although these care-
fully improved data have verified their potential for urban appli-
cations, nonetheless, many challenges and problems remain to
be addressed.

For example, a severe shadow effect, typically caused by the
interaction between lower Sun angles and higher buildings in
urban area, may significantly damage the accuracy of classifi-
cation of shaded members [14], [15]. Several works related to
the identification of shaded members have been reported [4],
[16]–[18]. Some of them assigned the whole shaded surfaces
into a single class, probably limited by the poor separabil-
ity between different shaded classes which is often beyond
the capabilities of applied classification methods [4], [16].
Although some researchers have paid attention to the detec-
tion and reconstruction of shaded scene, due to the difficulties
in compensating for each band of weakened reflections in the
scene, so far, only visually, instead of spectrally, reconstructed
shadow-free imagery can be obtained [15], [19]–[21].

Fortunately, it is not a rare situation that a shaded mem-
ber geographically connects to a bright one involved in the
same class (e.g., the shaded and the bright VS members). This
lays the conceptual foundation for NFSRG. The shadow effect
to the accuracy of vegetation mapping may be promised to
be resolved because the work mainly relies on the geograph-
ical connectivity defined by image coordinates, rather than
the spectral similarity defined by domains of image features.
The objective of this research is to improve the performance
of extracting shaded VS members at individual tree level for
urban vegetation mapping thus to avoid some almost inevitable
mistakes involved in typical classification.

II. STUDY SITE AND TEST IMAGES

The study site is in the downtown area of Shanghai, located
on the eastern coast of mainland China. Vegetation covered sur-
faces often show intensive planting and complex layout in the
city and most of them are surrounded by buildings and other
urban facilities therefore making a large proportion of them
shaded.

More than 20 aerial false-color near infrared (NIR) images,
referred to as “NIR images” in the following text, serve as
the experimental data. The images were purchased from the
geographic information service institution of the government.
The sensors aboard on were of photogrammetric cameras. The
original photographic scales were from 1:8000 to 1:15 000
and therefore the original spatial resolution at nadir was bet-
ter than 2 m. Each photo was later scanned and geometrically
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and orthographically corrected into digital image before selling.
The image colors of red, green, and blue indicate NIR (760–
850 nm), R (red, 630–690 nm), and G (green, 520–600 nm)
bands, respectively, because the photographic film was sensi-
tive to the reflection of NIR band. To verify the generality of the
NFSRG method, the test images were randomly selected from
nine image groups which were acquired in different years and
also likely with different sensors and processing equipment.

In Shanghai, likewise with all rainy southern cities in China,
NIR images are widely used for city surveying and mapping
due to the difficulties in acquiring satellite images all seasons
with satisfying cloud cover. Therefore, it is desirable for these
cities to gain access to the technology of mapping VS from NIR
images.

III. METHODOLOGY

A. Overview

NFSRG can be understood as a kind of hybrid classification
in which a series of pixel-based classifications are organized
as a seeded-region-growing process. From the view point of
supervised classification, the iteratively captured VS members
always serve as training samples for the next classification.
From the perspective of seeded region growing, the members
will serve as seeds for the next growing.

A whole NFSRG process involves three linked stages:
extracting bright VS, extracting shaded VS within the right and
the left buffers. Each stage consists of two steps: seed collec-
tion and region growing. Two key issues contribute to its good
performance. 1) The weighted buffer: The growing is limited
in several weighted buffers to fit for the variable separability
between VS and background. The one, defined by an NDVI-S
relationship where S is the saturation in the Hue-saturation-
value color model, is for extracting bright VS members. The
other two, defined by a pair of NDVI–NDSV relationships
where NDSV is the normalized difference between saturation
and brightness, are for extracting shaded VS members. 2) The
during-growing constraint: To avoid unexpected entrances of
water and smooth shaded background members, a during-
growing constraint, named expansion rate, is imposed on the
growing process for extracting shaded VS members. Fig. 1
shows the flowchart of NFSRG.

B. Image Sampling and Nonlinear Fitting

During the image sampling, a cursor-pointed pixel indicat-
ing a certain class serves as a sample (see Fig. 2). Its features
are calculated in the same time and prepared for the nonlinear
fitting. For each test image, there are no less than 50 samples
(cursor-pointed pixels) for each of the classes.

The sampling data reveal that shaded VS samples usually
possesses higher S and lower V (brightness) therefore larger
value of S subtracting V than those of shaded background
ones. Above-mentioned NDSV is derived by normalizing the
value (1) [22]. NDSV may offer an opportunity to distinguish
between shaded VS and shaded background

NDSV = (S − V )/(S + V ). (1)

Fig. 1. Flowchart of NFSRG.

The relationships of NDVI-S and NDVI–NDSV can be
expressed as the general forms of quadratic nonlinear correla-
tion as in (2) and (3). Fig. 2 provides a case couple of the fitting
curves for No. 4 image group. The curves for other eight groups
are provided in Fig. 3

S = a1 ·NDVI 2 + b1 · NDVI + c1 (2)

NDSV = a2 ·NDVI 2 + b2 · NDVI + c2 (3)

where a1, b1, c1, a2, b2, and c2 are the undetermined
coefficients.

It can be seen from Figs. 2 and 3 that the shaded VS samples
can typically be split into left and right subsets by complying
with NDVI = 0. A pair of NDVI–NDSV relationships, the left
and the right, are separately derived from the subsets and then
used to define the left and the right buffers.

Table I lists the coefficients of the relationships for all nine
image groups. Our experiments reveal that the coefficients did
not change significantly between the images of the same group.
Consequently, a set of relationships, typically one NDVI-S and
two NDVI–NDSVs, for a certain group are applicable to all the
images of that group.

Some phenomena can also be discovered from the table and
figures. For example, the larger the contrast of DNs of an NIR
image is, typically the larger the NDVI is. In this case, almost
all the VS samples fall into the right subset (e.g., No. 6 and 7
groups in Fig. 3) and the case can be found out by the laws of
a21 = 0 and b21 = 0.

C. Extracting VS Using Seeded Region Growing

The seeded region growing is under the constraint of
“geographic-space connectivity,” which means a pixel con-
necting to others involved in their image coordinates. The
growing always begins from a more reliable end of a more
reliable buffer. Within a buffer, the lower the NDVI is, often
the more seriously confused the VS and background members
become. However, the gradually narrowed buffer associated
with a continually decreased weight and the constraint of
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Fig. 2. Case couple of fitting curves. (a) Fitting in NDVI-S space. (b) Fitting in NDVI–NDSV space. It can be seen from (a) that the bright VS and the background
samples are separable in an NDVI-S space. Therefore, an NDVI-S relationship (magenta curve) for extracting bright VS can be derived by a nonlinear fitting with
the bright VS samples complying with (2). On the other hand, it is difficult to separate shaded VS from background samples in the same space. However, it is
not a rare situation that they appear separable in an NDVI–NDSV space [see (b)] and typically can be split into left and right subsets. Thus, two NDVI–NDSV
relationships (black curves) for extracting shaded VS can be derived complying with (3).

geographic-space connectivity as well as the during-growing
constraint (see Section III-D) may ensure the full extraction of
the VS members and also avoid the unexpected entrance of the
background members.

As mentioned before, the extraction involves three linked
stages: extracting bright VS, extracting shaded VS within
the right and the left buffers. Next, they will be introduced
separately.

1) Extraction of Bright VS: The initial seed set (seedL) con-
sists of two subsets (4). The first [the main, e.g., the set in
Fig. 8(a)] complies with NDVI > VIL07, while the other [the
extra, e.g., the set in Fig. 8(b)] is limited within a narrow region
along an NDVI-S curve

seedL = {seedL|NDVI > VIL07 ∪ S

> (fV I−S(VIL05)± P5 · dSL) ∩ S

< (fV I−S(VIL07)± P20 · dSL)}
(4)

where maxVIL is the maximum NDVI of the bright VS
samples; fVI−S is an NDVI-S relationship derived from the
bright VS samples; VIL05 = c ·maxV IL · 0.5, where c is
an adjustable coefficient with an experimental default of 1.0;
VIL07 = c ·maxV IL · 0.7; P is the weight of buffer, where
P5 and P20 mean P = 5% and P = 20%, respectively; and
dSL is the range of S of the bright VS samples. The region for
collecting seeds is typically defined by certain samples. Those
constants (e.g., 0.7%, 0.5%, 5%, and 20%) are experimental
defaults and occasionally need to be tuned. The coefficient c is
ready for some possible changes such as a variation in image
type. Increasing c may reduce the number of VS members, and
vice versa. The constants in (5a)–(9) are similar.

Equation (5a) formulates an iterative process to perform
seeded region growing within a weighted buffer defined by an
NDVI-S relationship. Figs. 4 and 5 show a case form and the
general form of the process, respectively

VL =

i=n
Pi=0

NDi=minVIL∑
NDi=VIL07

Pi=0.4
i=0

(fVI−S(ND i)± Pi · dSL) (5a)

VL0 = seedL (5b)

VLi−1 ⊆ VLi = TURE (5c)

where VL is an iteratively increasing set of bright VS mem-
bers [e.g., the set in Fig. 8(c)]; ND i is the ith NDVI with an
increment of −0.01; Pi is the ith weight; and n is the number
of iterations and n = (VIL07 −minVIL)/0.01. Condition (5b)
means that seedL serves as the growing start. Condition (5c)
says that the iteratively captured VS members always serve as
the newly added seeds for the next growing.

2) Extraction of Shaded VS: The shaded VS samples can
be typically split into left and right subsets. If the number of
samples in one of them is less than a given value (e.g., less than
one-fourth of the total shaded VS samples) the subset will be
dispensed with. Otherwise, both buffers derived from the two
subsets will be considered and the growing will conduct within
the right one at first and then the left.

An extra seed set for capturing shaded VS members is always
required because some of the shaded may not connect geo-
graphically to the early captured members in VL. Equations (6)
and (8) depict the rules to collect the extra seeds within the right
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Fig. 3. Eight couples of fitting curves in NDVI-S and NDVI–NDSV spaces. There are the fitting curves for other eight image groups with the same legends as in
Fig. 2. For each label, the first number is the serial number of image group and the other is the index of relationship, NDVI-S and NDVI–NDSV referring to as
“1” and “2,” respectively. For example, 3-2 means the NDVI–NDSV relationship/curve for No. 3 image group. The absent graphs which should be labeled as 4-1
and 4-2 are those given in Fig. 2.

and left buffers, (7a) and (9a) formulate the iteratively growing
processes within the two buffers, and Figs. 6 and 7 show the
general processes, respectively. Fig. 8 provides an example of
extracting VS by NFSRG with intermediate outputs

seedD1 = {seedD1|NDSV

> (fVI−SV (VID07)± P5 · dSVD) ∩NDSV

< (fVI−SV (maxVID)± P20 · dSVD)} (6)

where seedD1 is an extra seed set collected from the right
buffer [e.g., the set in Fig. 8(d)]; fVI−SV is a right NDVI–
NDSV relationship; maxVID is the maximum NDVI of the

shaded VS samples; V ID07 = c ·maxV ID · 0.7; dSVD is the
range of NDSV of the shaded VS samples

VDR =

i=n
Pi=0

NDi=minVID∑
NDi=maxVID

Pi=0.4
i=0

(fVI−SV (ND i)± Pi · dSVD) (7a)

VDR0 = VL ∪ seedD1 (7b)

VDRi−1 ⊆ VDRi = TURE (7c)

where VDR is an iteratively increasing set of shaded VS mem-
bers extracted within a right buffer [e.g., the set in Fig. 8(e)];
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TABLE I
COEFFICIENTS OF NDVI-S AND NDVI–NDSV RELATIONSHIPS

No. is the serial number of image group and the numbers are the same as those in Table III. The later three coefficients are further divided into a21, b21, c21,
a22, b22 and c22, of which the first three are for the left and the others for the right relationships.

Fig. 4. Case process of extracting bright VS members. The samples were
acquired from an image of Group 4 by image sampling. Parameters VIL05

and VIL07 demarcate the relatively reliable region for bright VS seeds.

n = (maxVID −minVID)/0.01. The meanings of ND i and
Pi, are the same as those in (5a). Equation (7b) depicts the
growing start. The meaning of (7c) is similar to that of (5c)

seedD2 = {seedD2|NDSV

> (fLVI−SV (VI ) + P20 · dSVD) ∩NDSV

< (fLVI−SV (VID15) + P5 · dSVD)} (8)

where seedD2 is another extra seed set for the case of only
left buffer available; V ID is the NDVI at the intersection of
the left and the right NDVI–NDSV curves; fLVI−SV is a left
NDVI–NDSV relationship; minVID is the minimum NDVI of
the shaded VS samples; VID15 = minVID · 1.5

VDF =

i=n
Pi=0

NDi=minVID∑
NDi=maxVID

Pi=0.4
i=0

(fLVI−SV (ND i)± Pi · dSVD) (9a)

VDF 0 = VDR ∪ seedD2 (9b)

VDF i−1 ⊆ VDF i = TURE (9c)

Fig. 5. General process of extracting bright VS members. This figure shows a
general form from Fig. 4 for all the cases labeled with the relationship index “1”
in Fig. 3. The main part of seedL complies with NDVI > VIL07 while the
other (the extra) is limited in a narrow region along the NDVI-S curve. These
constants in it are the experimental defaults for weight P and the same to those
in Figs. 6 and 7.

where VDF is an iteratively increasing set of shaded VS mem-
bers extracted within a left buffer. Equation (9b) depicts the
growing start. The meaning of (9c) is similar to that of (5c).

D. During-Growing Constraints

The main purpose of utilizing seeded region growing is to
take advantage of the so-called “during-growing analysis,” i.e.,
taking the previous results as a reference to decide whether a
candidate is qualified or not. Some presetting constraints have
remarkable influences over the decision. The expansion rate is
an example of such constraints. Others associated with various
applications may also be designed by referencing this.

With NFSRG, the growing is limited within a series of
intervals (e.g., those green dashed rectangles in Fig. 4). The
number of the qualified members during one time iteration can
be determined by the domains of an interval. However, pix-
els on a whole tree crown unlikely fall within a single interval
due to their uneven reflectance, i.e., more time iterations being
required for all of them to enter. Other background members
likely enter in the same time due to the difficulty in distin-
guishing between the former and the latter. Fortunately, the
majority of unexpected entrance can be controlled by some
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Fig. 6. General process of extracting shaded VS members in right buffer. An
extra seed set referring to as seedD1 is necessary for extracting shaded VS
members which connect to no bright VS one. The collection is limited in a
narrow region along the NDVI–NDSV curve within which shaded VS and
background members appear separable to some degree.

Fig. 7. General process of extracting shaded VS members in left buffer. In the
case of only the left buffer available (e.g., the case labeled with 3-2 in Fig. 3),
another extra seed set referring to as seedD2 is required. The faint differences
in NDSV between shaded VS and shaded background may offer a promise to
collect such seeds.

during-growing constrains. For example, if the candidates are
the members of “smooth dark background,” such as water and
shaded roads, the number of the entered during one time itera-
tion likely increases suddenly. Such accidents can be detected
by the expansion rate defined as

ERi = (EAi − EAi−1) /EAi−1 (10)

where ER and EA are the expansion rate and expansion area,
respectively; and i is the loop variable.

Fig. 9 shows EA and ER during a case growing process.
The best separation between the shaded VS and the smooth
dark background can be achieved by adjusting the threshold of
ER. Such during-growing constrain, in many cases, contributes
to a better separability between different shaded members with
different roughness.

E. Clumping VS Members Together

The originally captured VS members by NFSRG are often
very scattered. It is necessary to clump them together for
objects. In general, as long as the VS members geographically
connect with each other to some degree they can be clumped

Fig. 8. Results and process of extracting VS using NFSRG. (a) The main part
of seedL complying with NDVI > VIL07 (4); (b) The other part of seedL
(4); (c) V L [(5a)–(5c)]; (d) seedD1 (6); (e) V DR [(7a)–(7c)]; (f) The final
results of VS (sketched by cyan lines).

together using morphological operations. The process involves:
bonding discrete members into objects by morphological clos-
ing, then smoothing the object boundaries by morphological
opening, and removing the objects smaller than a given size by
area filtering. Fig. 10 gives two examples after the clumping.

F. Refining VS Objects

A refining process sometimes needs to be taken into account
to make an extra improvement in the accuracy of VS objects.
This is conducted by human–computer interaction and includes
to find and remove the false-present objects by the hitting algo-
rithm and to generate the false-absent objects by the point
expansion algorithm.

1) Hitting Algorithm: The original VS object set in the
form of binary image refers to as VS0. The so-called hitting
algorithm comes from the hitting set theory, but much simpler.
The algorithm is applied to detect a cursor-pointed member
from V S0 in a mouse-click event. It is relatively easier to detect
the false-present objects because they are parts of the true mem-
bers of V S0. With the hitting algorithm, a false-present object
is pointed by cursor and then removed from V S0.

2) Point Expansion Algorithm: However, to determine a
false-absent object is not easy. Its absence results from that
the feature domains defined by its pixels likely to deviate from
those defined by most other pixels in V S0. Otherwise, it would
not miss. Based also on NFSRG, a novel algorithm, named
point expansion, has been explored to capture such pixels.
Controlled also by the expansion rate, the desired new objects
can be “generated.”

A point expansion process includes these steps: (1) tak-
ing a cursor-pointed pixel and all the pixels in its size-given
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Fig. 9. Extracting VS with and without the expansion rate constrain. (a) and (b) EA and ER change with i. (c) and (d) without and with the expansion rate. With the
continual increase of i, ERs are relatively stable at most steps whereas EAi often steadily increase with small amplitudes. However, both EAi and ERi increase
suddenly as i equates to 25 due to the entrance of a larger body of water. After this, ER is back again to the earlier stability. (c) and (d) are the magenta lines
sketch the growing results, whereas the yellow crosses show the sampling points. The process of capturing VS members in (d) is controlled under the condition of
ER < 3.

Fig. 10. Two examples of extracting VS objects (sketched by cyan lines) using NFSRG from (a) No. 7 and (b) No. 9 groups, respectively.

neighborhood as samples, (2) deriving an NDVI–NDSV rela-
tionship from these samples by nonlinear fitting, and (3) taking
these samples as the initial seeds to conduct seeded region
growing within the buffer defined by the relationship to capture
those always under-extracted VS members. The process can be
formulated as

V =

i=n
Pi=0.2

NDi=minV I∑

NDi=maxV I
Pi=0.5
i=0

fV I−SV (NDi)± Pi · dV (11a)

V0 = seed (11b)

Vi−1 ⊆ V = TURE (11c)

ER < T3 = TURE (11d)

where V is an iteratively increasing set of the always under-
extracted VS members during one time point expansion; V0

and Vi are the original and the i-th increasing sets, respectively;
fVI−SV is the NDVI–NDSV relationship derived from the sam-
ples; seed is all the samples; minV I , maxV I , minSV , and
maxSV are the end values of NDVI–NDSV region decided by
the samples [see Fig. 11(a)]; dV = maxSV −minSV.

Fig. 11(a) shows a certain procedure of deriving an NDVI–
NDSV relationship. Fig. 11(b) provides an example of the
refining process.

In addition, the hitting and the point expansion algorithms
can also serve as a tool for the late accuracy assessment because
the differences between before and after the refining can be
referred to as the errors involved in the automatically extracted
VS objects.

IV. DISCUSSION

Next, the principle and characteristics of NFSRG will be
discussed and the accuracy assessment will be given.
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Fig. 11. Refining VS objects. (a) A case fitting process at a mouse click event. Gradually deduced P may continually narrow the buffer (in this case P from 0.5 to
0.2) as the separability between VS and background worsens. Black filled circles represent samples (a cursor-pointed pixel and its neighboring pixels). Gray colored
represents the sample-DN-defined region within which the haloiline region is the buffer where point expansion algorithm works. (b) A case refining process. Those
generated false-absent objects (magenta line sketched) reveal that the point expansion algorithm works well. Blue line represents original VS objects. Yellow line
represents false-present objects removed by the hitting algorithm. Magenta line represents false-present objects generated by the point expansion algorithm.

A. Principle and Characteristics of NFSRG

NFSRG is a kind of serial classification organized as a
seeded-region-growing process. The classifications conduct
typically in a two-dimensional feature space, NDVI-S or
NDVI–NDSV, for urban vegetation mapping. By imposing a
constraint on the growing process, some almost inevitable mis-
takes involved in a typical “single” classification can be proba-
bly avoided. This is the actual motivation for exploring NFSRG.

Fig. 12 and Table II provide three examples of comparing
two kinds of VS objects obtained by the single classification
and NFSRG, respectively. The decision tree serves as the clas-
sifier model for the former. To ensure the complexity of feature
space comparable between the two methods, the input vector
for the former consists of three components (NDVI, S, and V )
also derived from the DNs involved in both the RGB and the
Hue-saturation-value color models.

It can be seen from Fig. 12 and Table II that the result accu-
racy of extracting VS by NFSRG is much better than that by
single classification. The distinct difference in their capability
to capture VS objects may also be proved by the up to 88.88%
of differences in area of the VS objects.

By the way, NFSRG is under the fundamental conceptions
of classic seeded region growing (SRG) but with following
modifications. 1) As using SRG, it is required to keep the con-
nectivity in geographic space and the similarity in feature space
between new entered members and original seeds. In the use of
NFSRG, however, only the former is required. This enables the
characterization of generating shaded VS members from bright
VS seeds. 2) To avoid possible over-growing, SRG requires
feature homogeneity in an iteratively renewed region whereas
NFSRG only requires to limit the expansion rate to a lower
level. The latter is favorable for the extraction of heterogeneous
objects (e.g., tree crowns). 3) NFSRG has far better tolerance
of seed noises than SRG dose. The noises usually do not sig-
nificantly influence the final accuracy due to the usages of the

weighted buffers and the during-growing constrain in a NFSRG
process.

B. Accuracy Assessment

The assessment is to evaluate the differences in the lay-
outs of VS objects between the automatically extracted by
NFSRG and the visually interpreted, therefore, the so-called
“error rate” as a measure being employed. The incorrect vege-
tation objects, including the over-extracted (false-present) and
the under-extracted (false-absent) ones, cannot become aware
before they being extracted. In most case, such objects/pixels
may not be collected in the sampling phase as the reserved
checking samples for accuracy assessment since they usu-
ally do not have the typical appearances of vegetation covers.
Therefore, they are practically collected as accurately as possi-
ble by human–computer interaction in the refining phase (see
Section III-F) with the hitting and the point expansion algo-
rithms to promise an objective assessment. Nine test images are
randomly selected from all nine groups for the assessment.

It can be seen from Table III that the mean error rate,
including the over-extracted and the under-extracted, is 3.05%;
in other words, more than 96% of VS objects can be automati-
cally and correctly extracted.

V. CONCLUSION

NFSRG, a series of classified results are organized by a
seeded-region-growing process. The iteratively captured VS
members are always serve as newly added training samples
for the next classification or as newly added seeds for the next
growing. By imposing the expansion rate on the phase of cap-
turing the shaded VS, some almost inevitable mistakes involved
in typical single classification can be avoided. The accuracy
assessments have revealed that more than 96% of VS objects
can be automatically and accurately extracted by NFSRG.
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Fig. 12. Three examples of comparing the differences between using the single classification and NFSRG. (a)–(e) are for Example 1. Of them, (a) is the original
image from No. 2 group, (b) shows the assigned members by the single classification, (c) gives the VS objects clumped from (b) by morphology; (d) provides
the VS objects extracted by NFSRG, and (e) gives a comparison between the objects shown in (c) and (d). (f) and (g) are the similar comparisons for other
two instances from No. 4 and No. 2 groups. By comparing these sketched objects with their background images in (e)–(g), it can be seen that the conformity
between the NFSRG-captured VS-objects and the visually observed ones is much better than that by replacing NFSRG with single classification. The total error
rate (Emax) in Table II reveals the distinct differences in the results obtained by the two methods. In residential area with high-density buildings, Emax may raise
further more [see (e)] due to a more serious shadow effect. The members in (b): green—bright VS; blue—shaded VS; white—bright background; and black—
shaded background. The objects in others: blue—VS objects; yellow—over-extracted (should be removed) VS objects; and majenta—under-extracted (should be
generated) VS objects.

TABLE II
EVALUATION FOR THE COMPARISONS SHOWN IN FIG. 12

A0 is the number of automatically extracted VS pixels by NFSRG; Aover and Aunder , the numbers of VS pixels over-extracted and under-extracted by the
single classification respectively; Eover = (A0 −Aover) · 100/A0. Eunder = (A0 −Aunder) · 100/A0. Emax = Eover + Eunder.

After conducting a literature assessment of current practices
in urban vegetation mapping with high-resolution remote sens-
ing data, we found the NFSRG method can provide significant
accuracy improvement.

As a hybrid classification method, NFSRG also has some
limitations. First, it works only in a low-dimensional fea-
ture space. More other features, for extracting other members
instead of vegetation, can be allowed, but a low dimensionality
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TABLE III
ACCURACY ASSESSMENTS FOR ALL THE NINE IMAGE GROUPS

Year is the photography time of an image group; entirePIX, the number of the automatically extracted VS pixels; underN, the numbers of
under-extracted VS pixels generated by the point expansion algorithm; overN, the numbers of over-extracted VS pixels detected by the hit-
ting algorithm; underRE = (underN/entireN) · 100%; overRE = (overN/entireN) · 100%; entireN = entirePIX + underN − overN ;
maxRE = underRE + overRE.

is still required, otherwise too complex relationships may dam-
age its universality. In addition, more buffers can be derived
by sectional fitting but the geographic connection between
members of relevant classes also needs to be promised (e.g.,
the connection between the bright VS and the shaded VS
members), otherwise, the NFSRG method is not applicable.
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