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Abstract Various spectral data preprocessing approaches
have been used to improve endmember extraction for
urban landscape decomposition, yet little is known of their
comparative adequacy for impervious surface mapping.
This study tested four commonly used spectral data
treatment strategies for endmember derivation, including
original spectra, image fusion via principal component
analysis, spectral normalization, and the minimum noise
fraction (MNF) transformation. Land cover endmembers
derived using each strategy were used to build a linear
spectral mixture analysis (LSMA) model in order to unmix
treated image pixels into fraction maps, and an urban
imperviousness map was generated by combining the
fraction maps representing imperviousness endmembers.
A cross-map comparative analysis was then performed to
rank the four data treatment types based on such common
evaluation indices as the coefficient of determination (R?)
and root mean square error (RMSE). A Landsat 7 ETM+
multispectral image covering the metropolitan region of
Shanghai, China was used as the primary dataset, and the
model results were evaluated using high-resolution color-
infrared aerial photographs of roughly the same time
period. The test results indicated that, with the highest R?
(0.812) and the lowest RMSE (0.097) among all four
preprocessing treatments, the endmembers in the form of
MNF-transformed spectra produced the best model output
for characterizing urban impervious surfaces. The outcome
of this study may provide useful guidance for future
impervious surface mapping using medium-resolution
remote sensing data.

Keywords impervious surface estimation, linear spectral

Received September 3, 2013; accepted March 3, 2014

E-mail: mhji@geo.ecnu.edu.cn

mixture analysis, minimum noise fraction, spectral normal-
ization, image fusion

1 Introduction

Impervious surfaces, generally defined as anthropogenic
features that water cannot infiltrate, are commonly
recognized as a key indicator in assessing the health of
urban ecosystems and environmental quality (Arnold and
Gibbons, 1996). Their estimation in urban areas has been
increasingly relying on remote sensing, especially with
medium spatial resolution imagery, which provides
complete coverage for large areas with low costs (Ji and
Jensen, 1999; Lu and Weng, 2006). On the other hand,
medium-resolution imagery is prone to the so-called
“mixed pixel” problem. This problem is defined as the
spectral mixture of more than one material within a single
pixel due to the high degree of heterogeneity of urban
landscapes (Lu et al., 2011). The presence of mixed pixels
may significantly degrade urban mapping quality and
affect the effective use of remote sensing data for urban
applications.

Among numerous methods that have been proposed to
cope with mixed pixels (Ji and Jensen, 1999; Wu and
Murray, 2003; Mohapatra and Wu, 2008; Hu and Weng,
2009; Im et al., 2012), linear spectral mixture analysis
(LSMA) is most widely used with medium-resolution
remote sensing data (Lu et al., 2003; Wu and Murray,
2003; Lu et al., 2004; Lu and Weng, 2004; Ji and Feng,
2011). LSMA is a physically based image processing
method that assumes the per-pixel radiance to be a linear
combination of the endmember spectra of all ground
materials within the image scene. Theoretically, LSMA is
capable of improving land cover classification accuracy by
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modeling the spectral mixture of a pixel from adequately
derived endmembers (Lu et al., 2003, 2004; Lu and Weng,
2004). In practice, however, LSMA still faces some
technical challenges. The most critical issue is centralized
on how to select appropriate endmembers to represent
major land cover types in an image scene, especially in
highly heterogeneous urban areas with large spectral
variation. One solution to this problem is to build a
scene-oriented spectra library to support multiple end-
member spectral mixture analysis (MESMA) so that
spectral constituents of each land cover type can be
mapped into separate endmembers (Roberts et al., 1998;
Rashed, 2008). In most applications, however, a simpler
approach is adopted, i.e., preprocessing spectral data in
favor of endmember selection through a chosen data
treatment strategy.

Various data preparation techniques have been designed
to make multispectral imagery more suitable for end-
member detection. Principal component analysis (PCA)
(Smith et al., 1985) and minimum noise fraction (MNF)
transformation (Green et al., 1988) have been used to
compress multispectral data with high between-band
correlation into fewer uncorrelated components. With the
majority of information distilled from the original spectra,
these components are then used to construct a transformed
space capable of delineating spectra of different land cover
types more easily and accurately (Wu and Murray, 2003;
Lu and Weng, 2004). An alternative data preparation
method is spectral data normalization, as coined by Wu
(2004). This method aims to reduce the brightness
variation of image pixels within individual urban land
cover components, e.g., vegetation, impervious surface,
and soil, thus allowing a component to be represented by
just one single endmember. Further studies have shown
that component-oriented spectral normalization is an
effective tool for identifying endmembers (Yuan and
Bauer, 2007; Chen and Li, 2008; van de Voorde et al.,
2009). Along with the recent growing interest in pan-
sharpening of multispectral data for improved spatial
resolution (Li et al., 2002; Gonzalez-Audicana et al., 2005;
Jing and Cheng, 2011; Ji et al., 2012; Yang et al., 2012),
image fusion has also been used to reduce the complexity
of mixed pixels by introducing spatial details through the
readjustment of image intensity (Zurita-Milla et al., 2011).
Further, the texture and context information derived from
the panchromatic band helped to identify endmembers (Lu
and Weng, 2005).

While the above data treatment routines have proven
effective in their respective application settings, knowl-
edge about their relative strength and weakness in dealing
with the same spectral dataset obtained from a highly
complex and heterogeneous urban area is still lacking in
the literature. Practical guidance is needed regarding which
data preparation approach is appropriate when remote
sensing analysts are faced with multiple methodological
choices. A comparison of different data treatment types on

endmember extraction would help to highlight the
strengths and weaknesses of each approach for spectral
data preprocessing. It may also reveal some influential
factors to be considered for further improvement of
mapping urban impervious surfaces. The objective of
this paper, therefore, was to examine the effects of the
aforementioned four types of spectral data treatments (i.e.,
original spectra with no treatment, MNF transformation,
PCA-based image fusion, and spectral normalization) on
urban impervious surface mapping.

In this empirical study, a Landsat ETM+ image covering
the Central Business District (CBD) and its vicinity of
Shanghai, China was employed as the primary test data,
and some aerial photos within the study area were obtained
for result verification. The remaining text is organized as
follows. The next section introduces the study area and
datasets, followed by the third section describing the
methodological design and experimental procedure. A
comparative analysis of the imperviousness maps resulting
from different data treatment methods is presented in the
fourth section. The last section concludes with a summary
of the work and suggestions for future research.

2 Study area and data

The region under investigation covers the central portion
of Shanghai, China (Fig. 1) with a total area of
approximately 633 km?. Located in the forefront of
Yangtze River Delta (centered at 31°14'N and 121°29’E),
the city of Shanghai enjoys its position as the second
largest metropolitan region in China. Ever since 1978
when China’s national economic reform started, Shanghai
has been undergoing rapid urban growth in both popula-
tion and area. A tremendous amount of agricultural lands
have been turned over to residential, commercial, and
industrial uses over the years, resulting in a huge increase
and restructuring of impervious surfaces in the urbanized
area. Accurate impervious surface information is crucial to
urban planning and environmental management in Shang-
hai.

A cloud-free, high-quality Landsat 7 ETM+ image (path
118/row 38) of Shanghai, acquired on July 3, 2001, was
used as the primary dataset in this study. Provided by the
USGS Earth Resource Observation Systems Data Center,
the image was preprocessed for radiometric and geome-
trical correction to the 1G quality level before delivery.
This image was further projected onto the Universal
Transverse Mercator coordinate system. In addition, a set
of color-infrared aerial photographs, dated March and
April of 2000, were acquired for validation. These digital
aerial photographs possessed a 0.6-m spatial resolution and
were spatially registered to the ETM+ data for further
analysis (Fig. 1).

Due to the possibility of interference by water features
on the extraction of low-reflectance impervious surfaces
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Fig. 1 Study area: Shanghai CBD and its vicinity (The red box delineates the main study area, and the blue box indicates the coverage of

validation data).

during the spectral mixture analysis (Wu, 2004), water
bodies such as lakes and rivers were removed from the
ETM+ image via a mask generated from the modified
normalized difference water index (MNDWI) (Xu, 2006)
as expressed below:

MNDWI = (B5-B2)/(B5 + B2), (1)

where B2 and B5 are the red and first mid-infrared bands of
the ETM+ multispectral image, respectively. The threshold
value of MNDWI for the water mask was finally
determined to be 0.05 through multiple trial-and-error
experiments aided by visual inspection.

All image processing and result visualization were
performed using ENVI™ 5.0, and the linear spectral
mixture analysis and post-estimation analysis were
implemented in MATLAB™ 2012a.

3 Methods

The term “data treatment” to be used in this study refers to
the preparation of spectral data in a specific way. The
treated spectra will be used to generate MNF-based scatter
plots for endmember selection, and then used in the LSMA
modeling and classification process. The procedure for the
different spectral data treatment techniques compared in

this paper is shown in Fig. 2. In the case of original spectra
with no treatment, for instance, the ETM+- pixel reflectance
values will be transformed into an MNF component space
for interactive endmember selection, and classified using
the LSMA model built with the original spectra of selected
endmembers. Likewise, any other data treatment
approaches will not only engage an MNF transformation
of the treated data for endmember selection but also use the
transformed data as the basis for the subsequent LSMA
modeling and classification. For the sake of comparison, it
is instructive to provide more details about each of the data
treatment techniques below.
3.1 Spectral normalization
Spectral normalization is applied to reduce the brightness
variation of each V-I-S component. With increased
within-class homogeneity, it is expected that subsequent
image analysis may provide improved results (Wu, 2004).
Spectral normalization is achieved by rescaling the pixel
value in each band over the average value of all bands for
the same pixel, formally expressed as

1 &
=N bZl Ry,

_ R
R, =2 x 100, 2)
7
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Fig. 2 Procedure for comparing the effects of different spectral data treatment techniques on impervious surface mapping.

where R,, is the original reflectance for band b in a pixel, R,,
is the normalized reflectance for band b, u is the average
reflectance in a pixel, N is the total number of spectral
bands.

3.2 Image fusion

Image fusion is achieved via replacing the intensity
component of the multispectral image with an image
(usually panchromatic image) of higher spatial resolution
(Gonzalez-Audicana et al., 2004). Specific to the ETM+
data, image fusion can be used to incorporate rich textural
information from the 15-m panchromatic band into the
30-m multispectral data for improved estimation of
impervious surface areas (Lu et al., 2011).

Many image fusion methods exist, but principal
component analysis (PCA) was chosen for this study
because of its proven ability to preserve the spectral
integrity of the input images (Lu and Weng, 2005). The
PCA-based image fusion procedure consists of four steps:
a) resample the spectral data of the ETM+- six bands to the
resolution of the panchromatic image, b) transform
resampled multispectral bands into six principal compo-

nents (PCs), c) replace PCl (treated as the intensity
component) with the panchromatic image, and d) reversely
transform all six PCs back to the multispectral space
(Chavez et al., 1991). The result of this procedure is a six-
band image containing the spectral data most resembling
the original ETM+ image but having a spatial resolution of
I15m.

3.3 Minimum noise fraction transform

The minimum noise fraction (MNF) method removes
between-band collinearity through orthogonal transforma-
tion, using the first few components accounting for the
majority of variance in the original image (Green et al.,
1988). MNF is a common practice in LSMA-based
imperviousness extraction, used to make endmembers
more identifiable (Lu and Weng, 2004). The usual practice
of MNF in LSMA applications is for endmember selection
only, that is, the transformed data is only involved in the
construction of an MNF space for pure pixel identification
but not used in the later classification (Lu and Weng,
2004). As a comparing method, however, we hereby
deliberately use the MNF scores of each endmember
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directly to build an LSMA model for endmember fraction
mapping.

3.4 Endmember selection

The endmember selection in each data treatment case
follows the usual MNF-based procedure (Fig. 2). The
MNF components are first generated from each of the four
experimental datasets, and three 2-D scatterplots are then
constructed by pairing the first three MNF components.
The distributional pattern of plotted pixels is examined in
the plot to visually locate pure pixels that can be used to
represent individual endmembers. The typical pure pixels
are those located at the extreme vertices of the data cloud in
the scatterplots. Finally, the endmember spectra for each
case are obtained from the respective preprocessed image
by linking the pure pixel in the MNF space back to the
image feature space. It is worth noting that both the
original data and MNF transformed data produce a set of
identical endmembers in the MNF space, but in the latter
case, it is the transformed scores rather than the original
spectra that are used to represent the endmembers in
LSMA modeling. The end products of this procedure are
four sets of endmembers, each representing one land cover
type of interest in the targeted urban environment from a
specific data treatment perspective. These endmember sets
are used as model input for the subsequent LSMA
modeling.

3.5 Linear spectral mixture analysis

The LSMA assumes that the reflected radiance of a pixel is
a linear combination of the spectral endmembers repre-
senting major land cover types within the scene. Therefore,
the LSMA model can be formally expressed as

R, = Zfinim + Emjs 3)
i=1

where i =1, ..., n, n is the number of endmembers; R,,; is
the reflectance for band m in pixel j; R, is the spectral
reflectance of band m of endmember i; ¢,,; is the error for
band m and pixel j; f; is the fraction of endmember i in
pixelj. For a constrained unmixing solution, f;; is subject to
the following restrictions:

S
i=1

J;;=0. 4

Due to the existence of high spectral heterogeneity
among urban impervious materials, it is extremely difficult
to give a singular definition to the endmember known as
“imperviousness” (Wu and Murray, 2003; Lu and Weng,
2004). This issue has been coped with by spectrally

separating imperviousness into low and high albedo
endmembers during the LSMA modeling (Wu and Murray,
2003; Wu, 2004). In this way, a constrained least squares
solution is applied in this study in order to unmix the six
bands of the ETM+ image into four fraction maps (i.c.,
vegetation, high-albedo imperviousness, low-albedo
imperviousness, and soil). The final imperviousness map
will be the combination of both high-albedo and low-
albedo fraction maps.

3.6 Accuracy assessment and cross-map comparison

The accuracy of urban imperviousness derived from each
of the four experimental datasets was assessed with the
reference data manually interpreted from the color-infrared
digital aerial photographs within the same study area. The
resolution of the aerial photos was downscaled from 0.6 m
to 9.0 m for the convenience of visual comparison. A total
of 100 sample sites were randomly selected from the
validation area. Each site was sampled with a 3x3
window, yielding a coverage of 90 mx90 m on the fraction
maps and a corresponding 10x 10 window on the aerial
photographs. The intention of such a sampling design is to
minimize the effect of image-to-image misregistration and
make it relatively easy to compute the reference fraction
for each sample site. The reference fraction was calculated
from the aerial photographs as follows. First, each 9-m
pixel within the sample site area was visually determined
as being either impervious or pervious. Second, the
impervious pixels were tallied and aggregated for the
site. Third, the fraction was computed by dividing the
number of impervious pixels by the total number of pixels
within the site area (100 in this study). The averaged
fraction from the corresponding nine pixels in the fraction
map was used to compare with the reference fraction in the
accuracy assessment.

The cross-map comparison was performed on the basis
of two commonly used map accuracy indices, the
coefficient of determination (R?) and root mean square
error (RMSE). The calculation of R* followed the standard
statistical procedure, which is not further detailed here. A
positive and significant high value of R? between predicted
and observed values is considered to indicate that high-
quality endmembers are being extracted from the treated
dataset. The second accuracy indicator, RMSE, is defined
as

n

> " (SE;~150,)?

RMSE = \| = - , (5)

where ISE; is the estimated impervious surface fraction for
sample i, ISO; represents the impervious surfaces propor-
tion observed from the reference data for sample 7, and 7 is
the number of samples. In this case, low RMSE values
indicate a good fit between predicted impervious surfaces
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and the reference data. In addition, the scatterplots of the
1:1 relationship between observed and predicted values
were generated for further examination of model errors
(Wu and Murray, 2003).

4 Experimental results and discussion

4.1 Endmembers and their characteristics

Due to the high level of spectral complexity in the Landsat
ETM+ image of urban Shanghai, we expanded the generic
V-1-S model into a vegetation-high albedo-low albedo-soil
(V-H-L-S) model, which was represented by four end-
members, i.e., vegetation, high-albedo, low-albedo, and
soil. Imperviousness was hereby comprised of high-albedo
and low-albedo to cope with the spectral diversity of the
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urban land cover type in the study area. Each treated
dataset was transformed into MNF space and visualized in
the MNF 2D scatterplots for endmember selection. The
identified endmembers were graphed as characteristic
curves for each treatment type (Fig. 3).

It is rather interesting to see from these spectral curves
(Fig. 3) that all treatment types except MNF share a highly
similar reflectance pattern for vegetation, and less so for
the other three endmembers. This is because MNF has
transformed the original spectra into an entirely different
feature space. On the other hand, MNF seems to have
enlarged the gaps between different endmembers in the
first three components, leading to a higher overall
separability in its subsequent LSMA modeling. In
addition, the application of spectral normalization effec-
tively reduced the spectral diversity among all end-
members, and even made soil, high-albedo, and low-
albedo fit into the same data range.
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Fig. 3 Reflectance (original or transformed) characteristics of endmembers for the four data treatment types: (a) original spectra, (b)

fused spectra, (c) normalized spectra, and (d) MNF spectra.
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4.2 Generation of fraction maps for endmembers and
imperviousness

The fraction map for each urban endmember was obtained
by solving the fully constrained linear spectral mixture
model given in Eq. (3). A total of 16 fraction maps were
generated and grouped into four sets, with each row
corresponding to one type of data treatment (Fig. 4). Visual
inspection revealed that maps of the same endmember
shared a similar spatial distribution pattern across all
treatment types. For instance, high values of high-albedo
and low-albedo imperviousness tend to concentrate in the
central region of the study area, and the fraction values for
vegetation increase with distance from the CBD. Since the
study area was heavily urbanized, the soil endmember
exhibited relatively low fraction values all over the map in
all four cases.

Despite the similarity in distributional patterns, major
differences also existed among treatment types for the
same endmember, especially with respect to fraction
levels. Maps resulting from the original spectra and the
MNF treatment look highly similar (maps on row 1 and
row 2 in Fig. 4), except that vegetation seems better
characterized in the MNF case. This is especially evident
when a forest park located at the upper-right corner of the
map is examined. It suggested that the MNF transforma-
tion was capable of enhancing the spectral distinction of
endmembers by removing data collinearity and noise. In
comparison, image fusion seemed to produce a great
number of high fractions in high albedo and soil by
lowering the abundance of vegetation and low albedo
(maps on row 3 in Fig. 4). This might be caused by the
side-effect of introducing spatial details during the fusion
process, i.e., increasing the spectral contrast by splitting the
mixed pixels located in urban residential areas. The
fraction maps of normalized spectra are also very revealing
(maps on row 4 in Fig. 4). This treatment seemed to
provide a fair definition of low-albedo imperviousness, as
the urban transportation lines, usually paved by asphalt, a
material type typically with low spectral reflectance in all
bands, were clearly highlighted in the scene. Likewise,
vegetation was more clearly delineated and had greater
fraction values compared to other treatment types. This
demonstrated the spectral purification effect of the method,
i.e., homogenizing the spectra of mixed pixels toward the
dominating endmember, so as to sharpen the edges
between features with high reflectance values and those
with low values.

Four imperviousness maps (Fig. 5), each for a data
treatment type, were generated by additively combining
corresponding low-albedo and high-albedo fraction maps
of the same treatment type. As expected from a good
mapping result, these maps correctly show the concentra-
tion of high values in the CBD area and on the
transportation corridors, giving a seemingly well char-
acterized urbanization pattern in Shanghai.

4.3  Cross-treatment comparison of imperviousness fraction
maps

Two comparative analyses were performed on the
imperviousness fraction maps across data treatment
types. The first comparison was aimed at understanding
the relative behavior of different treatment types in
impervious surface mapping. This was achieved by pairing
the imperviousness fraction maps and calculating a
difference map for each pair. This operation led to six
difference maps’ being generated. Based on the data
treatment types involved in the operation, these difference
maps were labeled as Fused-Original, Original-Normal-
ized, Original-MNF, Fused-Normalized, Fused-MNF, and
MNF-Normalized, respectively (Fig. 6). For the conve-
nience of cross-map comparison, the fraction map of the
image fusion treatment was resampled to 30 m.

Among all six difference maps in Fig. 6, Original-MNF
exhibits a somewhat uniform pattern with the least
variation over the entire study area, suggesting that using
MNF-treated data for LSMA modeling tended to generate
results very similar to those of using the original ETM+
data. The second least variation pattern appeared on MNF-
Normalized, as most of its values were confined to +0.4. In
this map, the negative values are mostly associated with
heavily impervious objects (e.g., buildings and roads),
while the positive values are related to vegetated areas (e.
g., parks and greenbelts), implying that the MNF treatment
tended to produce a smaller value range for impervious-
ness fractions than the spectral normalization method. The
positive values in the high end revealed the tendency of
normalized spectra to regard vegetation-dominated urban
areas as being completely pervious, as evident in the forest
park located at the upper-right corner of the map. Similar
patterns also appear in the Original-Normalized map, and
even more imperviousness defined by the original spectra
was inverted to pervious surfaces by spectral normal-
ization.

On the other hand, Fused-MNF and Fused-Original
share the same fraction difference pattern, and both have
large fraction differences in the low end, indicating the
tendency of image fusion to underestimate impervious
features with saturated spectral values. Due to the
enhanced image intensity, fused spectral data seemed to
have uplifted the fraction level of some built objects (e.g.,
airport runways and building roofs made of special
materials). Interestingly, the Fused-Normalized map inte-
grates the above two patterns, which reveal the opposite
effects of these two data treatment methods on remote
sensing data. Compared to normalized spectra, impervious
fractions produced using fused data tended to be over-
emphasized in regions with low levels of imperviousness
and underrepresented in the high-level areas, thus making
these two fraction maps the most dissimilar among all six
pairs.

In order to complement the qualitative evaluation from
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Endmember fraction maps derived from the normalized spectra

Fig. 4 Fraction maps resulting from the four data treatment types (columns from left to right: high albedo imperviousness, low albedo
imperviousness, vegetation, and soil.

the above visual comparisons, a quantitative map accuracy  Section 3.6, R* and RMSE were computed from the 100
assessment was then performed against reference data. sampled points for each data treatment method and
Following the map assessment procedure proposed in documented in Table 1. Among all treatment strategies,
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Fig. 5 Urban imperviousness maps resulting from the four data treatment types.

MNF produced the best result, whereas the fused image
presented the worst case. Estimation using the original
spectra produced a result highly similar to that of MNF.
While plausibly conforming to the distribution pattern of
imperviousness in Shanghai in the previous visual
analysis, spectral normalization did not produce satisfac-
tory results. The scatterplots of sampled points and the
regression fitting lines in Fig. 7 provide some visual cues
about the correlation strength between estimated fractions
and reference data for the four data treatment approaches.
It is rather apparent that the values of sample points are
relatively dispersed in the fused and normalized cases and
tightly converged in the MNF and the original spectra
cases.

4.4  Further discussion

The assessment of the fraction maps presented above

provides useful insights into the four spectral data
treatment strategies being compared in this study. The
original spectra apparently contain full and undistorted
information from the urban environment, so they provide
the best possible potential for characterizing any end-
member of interest. However, due to the high collinearity
among the spectral bands, this potential may not be fully
realized with respect to an urban endmember with complex
and diverse spectral characteristics. In comparison, the
MNF scores transformed from the original spectra seem
less plagued by the spectral overlapping problem, as the
method is theoretically able to rotate the axes of the
original spectra to a new set of mutually orthogonal
positions. As a result, data treated with MNF performed
better than the original spectra in this case study. This
observation was also confirmed in other relevant studies
(Wu and Murray, 2003; Lu and Weng, 2004; Wu, 2009).

The results from image fusion did not meet the initial
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Fig. 6 Cross-treatment comparison of imperviousness fraction maps.

Table 1 Accuracy measures of impervious surface fraction maps induced from different spectra: original, fused, normalized, and MNF

Error Original LSMA Fused LSMA Normalized LSMA MNF LSMA
R? 0.7952 0.5185 0.7642 0.8120
RMSE 0.0972 0.1465 0.1417 0.0965

expectation of this study. The low level of accuracy might
have been caused by the altered spectral characteristics of
impervious pixels when a great number of textural details
are introduced. Instead of reducing the amount of mixed
pixels in the scene, the treatment seemed to have
complicated the problem by enlarging the spectral variance
of each endmember (Lu and Weng, 2005). Consequently,
even the purest training sites might have been contami-
nated by the insertion of spatial details, making it less
representative of a given cover type (Wu, 2009). This was
evident among the third-row fraction images in Fig. 4,
where the inter-endmember confusion drastically increased
between high and low albedos, as well as low albedo and
soil. Compared to the other data treatment approaches, the
impervious surface induced from the fused spectra
contained some outliers in several isolated locations (Fig.
6), very likely attributable to severe distortion of the
original spectra during the fusion process. Overall, this

implies that image fusion at medium resolution may not be
a good choice for an urban area with high structural
complexity and spatial heterogeneity.

The initial intention of using spectral normalization was
to suppress data anomalies so that the spectral hetero-
geneity of each endmember could be reduced (Wu, 2004).
Results from this study have clearly demonstrated the
existence of such an effect, but it led to degradation, rather
than improvement, of imperviousness modeling. In con-
trast to image fusion, spectral normalization works in an
opposite way, homogenizing data in favor of the spectra of
the dominating ground cover types in the pixel. As a result,
areas dominated by pervious features (e.g., forests or
parks) tend to be overestimated as being completely
pervious. This issue was also observed by Yuan and Bauer
(2007) and discussed in other studies (Chen and Li, 2008;
van de Voorde et al., 2009). Given the spectral complexity
of urban impervious surfaces, using a simple spectral
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Fig. 7 Scatterplots and regression lines of accuracy validation sample points for each type of data treatment: (a) original, (b) fused, (c)

normalized, and (d) MNF.

normalization may not be an adequate solution. Although
there was no test in this study to evaluate endmembers
other than imperviousness, caution must be taken when
choosing spectral normalization for endmember selection.

5 Conclusions

This study compared the performances of four different
spectral data treatment routines for impervious surface
estimation via LSMA from Landsat ETM+ multispectral
imagery. For each treatment method, fraction maps of four
endmembers (i.e., vegetation, high-albedo, low-albedo,
and soil) representing the urban landscape of Shanghai
were generated and analyzed. The impervious surface
fraction maps resulting from different treatments were
statistically validated and compared. Among all, the MNF
transformation exhibited the best performance in imper-
viousness estimation, followed by the original spectra with
no treatment. Data processed by spectral normalization and
image fusion did not produce good results. Due to the
nature of their respective processing mechanisms, the
former tended to overestimate imperviousness located in

the low end of the fraction scale, whereas the latter are
inclined to underestimate imperviousness in pixels domi-
nated by pervious spectra.

Although the MNF approach has been ranked the best
for impervious surface mapping in this study, the achieved
accuracy level (i.e., 0.81) is still considered unsatisfactory
by the de facto standard of 0.85, a magic figure widely
accepted in the remote sensing community (Foody, 2002).
This situation implies that the urban imperviousness in
Shanghai is even more complex than what was con-
ceptualized and so modeled in this LSMA layout. It might
require either a further breakdown of imperviousness
rather than just high and low albedos or more thorough
removal of water spectra from the original image. In the
former case, for instance, low albedo needs a finer
definition so that it can become more distinctive from the
vegetation spectra (see Fig. 3(d) for their confusion).
Methods of nonlinear spectral unmixing (Hu and Weng,
2009; Im et al., 2012) and multiple endmember spectral
mixture analysis (Lu and Weng, 2004; Powell et al., 2007)
may be good options to use for tackling this problem. The
latter case is related to the confusion of low-albedo with
water. The fact that widespread water pollution and
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numerous subpixel-level water bodies exist in Shanghai
made the removal of them extremely difficult. Solutions to
this issue may need to be developed using such ancillary
data as large-scale GIS hydrography layers and low-
altitude aerial photographs through visual interpretation.
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