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Previous studies have demonstrated urban built-up areas can be derived from nighttime
light satellite (DMSP-OLS) images at the national or continent scale. This paper
presents a novel object-based method for detecting and characterizing urban spatial
clusters from nighttime light satellite images automatically. First, urban built-up areas,
derived from the regionally adaptive thresholding of DMSP-OLS nighttime light data,
are represented as discrete urban objects. These urban objects are treated as basic
spatial units and quantified in terms of geometric and shape attributes and their spatial
relationships. Next, a spatial cluster analysis is applied to these basic urban objects to
form a higher level of spatial units – urban spatial clusters. The Minimum Spanning
Tree (MST) is used to represent spatial proximity relationships among urban objects.
An algorithm based on competing propagation of objects is proposed to construct the
MST of urban objects. Unlike previous studies, the distance between urban objects
(i.e., the boundaries of urban built-up areas) is adopted to quantify the edge weight in
MST. A Gestalt Theory-based method is employed to partition the MST of urban
objects into urban spatial clusters. The derived urban spatial clusters are geographically
delineated through mathematical morphology operation and construction of minimum
convex hull. A series of landscape ecologic and statistical attributes are defined and
calculated to characterize these clusters. Our method has been successfully applied to
the analysis of urban landscape of China at the national level, and a series of urban
clusters have been delimited and quantified.

Keywords: urban spatial clusters; object-based method; DMSP-OLS data; Gestalt
theory; minimum spanning tree

1. Introduction

The rapid urbanization at global scale has transformed a large quantity of the Earth’s
natural land surfaces into urban landscapes at unprecedented rates, which results in the
physical expansion and growth of built-up area in a single city as well as the increasing
coalescence among cities. Owing to modern transportation systems, efficient communica-
tion technology, and improved infrastructure, interactions among neighboring cities
become much more frequent than before, reflected by increased commercial cooperation
and movements of people, goods, and information between adjacent cities. When several
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large cities are in sufficient geographical proximity, these cities and their surrounding
areas would be considered as a single coherent urban complex – urban cluster. Gottmann
(1957) used the term ‘megalopolis’ to describe the huge metropolitan area along the
eastern seaboard of the US extending from Boston to Washington, DC. Other terms such
as Conurbation, Urban agglomeration, Urban Cluster, and Metropolitan interlocking
region have been also used in the literature to denote this large urban landscape phenom-
enon (Geddes 1915, Gottmann 1957, 1961, Zhou 1991). Despite the inconsistency in
terminology, this type of extensive, multi-centered, and multi-city urban landscape has
been well recognized. In this paper, we refer to the urban phenomena as Urban Spatial
Cluster in order to emphasize the geographic agglomeration and linkages between
individual cities. As Batten (1995) depicted, urban spatial cluster has a polycentric
configuration, in which cities with complementary functions strive to cooperate and
achieve significant scale economies, facilitated by fast and reliable corridors of transpor-
tation. Many researchers attempted to explain the formation of urban spatial clusters from
the perspective of geographical conditions, economic bases, policy background, traffic
conditions, and human capital (Alonso-Villar 2002). A better understanding of this kind of
large urban phenomenon is critical for intelligent management and governance of these
cities (Vogel et al. 2010).

The spatial pattern and structure of an urban spatial cluster evolves since its emergence
(Gottmann 1957, Friedmann 1973, Zhu 2004, Chen et al. 2006, Ma et al. 2008, Fang et al.
2010). Gu et al. (1999) identified two types of urban spatial clusters in China based on
spatial shape: blocky and linear shapes. The blocky urban spatial clusters tend to be located
in the well-developed regions, while linear-shaped clusters are always associated with
convenient transportation corridor. Zhu (2004) identified urban agglomerations with var-
ious shapes in China, including ‘>’, ‘Δ’, ‘^’, ‘H’, and ‘Φ’ shapes. In most cases, the nodes in
those shapes are the leading cities in the urban agglomerations. Somemetrics, such as fractal
dimension and compactness, were also used to characterize urban spatial clusters (Chen
et al. 2003, Chen et al. 2006, Fang et al. 2008, Ma et al. 2008, Fang et al. 2010). Fang et al.
(2008) found a positive correlation between the spatial compactness and the degree of
development of an urban agglomeration in mainland China. Examining the spatial pattern
and structure of urban spatial clusters is crucial for understanding the dynamics of urban
spatial clusters as well as the driving forces for their formation and expansion.

Traditionally, urban spatial clusters are defined and identified based on statistical
analysis of social-economic variables, such as urban area, population size and density,
and economic interaction between cities (Gottmann 1961, Zhou 1991), in which individual
cities are simply represented as point features. Geographically, an urban spatial cluster is the
spatial coalescence regions of cities, which can be visually perceived and delineated on
satellite imagery at a large scale. The geographical proximity between cities can be a key
factor affecting the interaction and integration of cities in a region, and hence can serve as a
proxy variable for identifying an urban spatial cluster. For example, the Japanese govern-
ment defines the area within 50 km from the central city Tokyo as Metropolitan region
where there is a high degree of spatial concentration of cities (Okamoto 1997). In the 2000
US Census, cities with higher commuter rates between them are grouped into the same
metropolitan area (Reschovsky 2004). Commuter rate tends to be higher between the cities
with a short distance apart. The geographical proximity may thus serve as a proxy for the
commuter rate if no commuting data are available.

Previous studies have demonstrated that remote-sensing technologies have been useful
in urban extent delineation, urban impervious surface mapping, and urban growth mon-
itoring. For the purpose of studying urban clusters at the national or continental scale,
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satellite images with relatively coarse resolution but a broad spatial coverage are more
suitable and efficient. The nighttime light images from Defense Meteorological Satellite
Program – Operational Linescan System (DMSP-OLS) – have been available since 1973
(Brandli 1978). The National Oceanic and Atmospheric Administration’s National
Geosciences Data Center (NOAA/NGDC) has produced annual digital stable nighttime
light image data set at global scale since 1992, by processing, rectifying, and aggregating
daily nighttime DMSP-OLS images (Elvidge et al. 1997a, Elvidge et al. 2007). Despite its
relatively coarse spatial resolution (about 1 km), the stable nighttime light images have
been widely used in mapping urban settlements (Imhoff et al. 1997, Elvidge et al. 1999,
Lo 2002, Sutton 2003, Small et al. 2005, He et al. 2006, Zhang et al. 2011, Letu et al.
2012, Liu et al. 2012), estimating population (Elvidge et al. 1997b, Sutton et al. 2001,
Roychowdhury et al. 2011), and other socioeconomic indicators (Elvidge et al. 1997b,
Doll et al. 2006, Shi et al. 2014b) at the national or continental scale. Lo (2002) pointed
out that there was a potential for detecting urban spatial clusters besides extracting urban
extents by using nighttime light image data, and he visually identified 10 most notable
urban spatial clusters in China without giving a formal numerical definition and detection
procedure. A more objective and quantitative method is needed to identify and character-
ize urban spatial clusters.

This paper presents a novel framework for deriving and quantifying urban spatial
clusters using nighttime light satellite images. The contributions of this paper are sum-
marized as follows:

● Our new object-based method provides an effective way for detecting and char-
acterizing urban spatial clusters quantitatively.

● The minimum spanning tree (MST) is used to represent spatial proximity relations
among urban objects.

● Urban spatial clusters in China at the national scale are numerically identified and
analyzed.

In the following sections, we will first describe the case study area and the data sets used
in the study. Then, we will present the methodological framework for object-based urban
spatial cluster analysis, followed by a report and discussion of analytical results. In the last
section, we will summarize key research findings and draw conclusions.

2. Study area and data sets

Our urban spatial cluster analysis covers mainland China at the national level. Hong
Kong, Macao, and Taiwan are not included in this analysis due to lack of relevant
statistical data. Since the economic reform and the adoption of open-door policy in
1979, China has been undergoing rapid economic development. With the relaxation of
the internal population migration control, China has been experiencing a rapid urbaniza-
tion, and the size and number of towns and cities have increased significantly.

The stable nighttime light image data in 2005 processed and archived by the NOAA/
NGDC (http://www.ngdc.noaa.gov) are used in this study. The data values represent the
light intensity from cities, towns, and other sites with persistent lighting, sensed and
recorded by DMSP-OLS sensors. The annual stable nighttime light images are cloud-free
composites made by using all the available archived DMSP-OLS smooth resolution data for
the calendar year. Ephemeral events, such as fires, have been discarded. Pixel value of the
image data ranges from 0 to 63, and 0 represents the dark background (Baugh et al. 2010).

2330 B. Yu et al.
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The nighttime light image of China in 2005 (Figure 1) was extracted from the global
data set by using a mask polygon of the national boundary of China with a 50 km buffer,
considering the light ‘blooming’ effect (Small et al. 2005) and the possible georeferencing
error (Henderson et al. 2003). The image was projected into the Lambert Azimuthal Equal
Area Projection referencing to WGS84 datum with the spatial resolution of 1 km.

Eleven scenes of Landsat 7 ETM+ images from US Geological Survey (http://www.
usgs.gov) were processed. The Landsat images were acquired in 2005 and covered the
Yangtze River Delta region. The urban areas manually interpreted from the Landsat data
were used as the ground truth to estimate the accuracy of urban areas extracted from
DMSP-OLS data.

Statistical data set of urban built-up areas was obtained from the China Land &
Resources Almanac, which was compiled by the Ministry of Land and Resources of the
People’s Republic of China (2005). This ancillary data set was used for determining the
threshold to extract the urban built-up area from the nighttime light image.

3. Methods

Our urban spatial cluster detection technique consists of several technical components: (1)
to extract urban built-up areas as urban objects from nighttime light image and derive
spatial attributes for each urban object; (2) to compute the minimum distance between
urban object boundaries and represent the spatial proximity relationships between urban
objects through a MST; (3) to partition the MST for identifying urban clusters; and (4) to
derive spatial attributes to characterize urban clusters. The data-processing procedure and
technical steps are shown in Figure 2.

Figure 1. Stable nighttime light image of China (2005).
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3.1. Delineation of urban built-up areas from nighttime light satellite images

Since urban built-up areas in modern societies are illuminated artificially at night, their
corresponding pixels in nighttime stable light images have larger digital number (DN)
values than the surrounding rural areas. In previous studies, the threshold-based segmen-
tation method had been proven to be effective and efficient to distinguish urban pixels
from rural pixels on DMSP-OLS nighttime light images (Imhoff et al. 1997, Small et al.
2005, He et al. 2006, Liu et al. 2012). Pixels with a DN value equal to or larger than the
threshold value DN0 will be considered part of an urban built-up area. On the contrary,
other pixels will be denoted as rural area. Namely, with a threshold value, the original
stable nighttime light image is segmented into a binary image by applying Equation (1):

g i; jð Þ ¼ 1; l i; jð Þ � DN0

0; l i; jð Þ<DN0

�
(1)

where l(i, j) is the DN value of the pixel at row i and column j in stable nighttime light
image, and g(i, j) is the pixel value at location (i, j) in the transformed binary image. In the
binary image, the DN value 1 represents urban areas and DN value 0 indicates rural or
sub-urban areas.

He et al. (2006) compared the urban built-up areas from the government’s statistical
yearbook with the urban areas segmented from the nighttime light image by varying the
threshold values. And the threshold value that minimizes the difference between the
image-derived urban area and statistical urban built-up area is selected as the optimal
value to extract urban areas from the nighttime light images. Since this study mainly
focused on the urban spatial cluster analysis after detecting urban built-up areas, we

Figure 2. Flowchart of object-based urban spatial cluster analysis from DMSP-OLS stable light
image.
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directly adopted a similar approach of He et al. (2006) to determine the optimal threshold
value for urban object extraction from the nighttime light images.

Due to the regional difference in atmospheric condition, climate, landscape, as well as
socioeconomic conditions (e.g., population density, business density, and GDP per capita),
the annual DMSP-OLS nighttime light image DN values may not be comparable at
regional and national scales. Therefore, no single threshold value is suitable for segment-
ing urban areas from DMSP-OLS nighttime light data for different regions or countries
(Henderson et al. 2003). In this paper, we subdivided China to 10 regions (Yang 1990),
and determined the optimal threshold value for each region using the approach in He et al.
(2006). The determined optimal threshold values for these regions are listed in Table 1,
and the urban built-up areas extracted from nighttime light image with these optimal
threshold values are shown in Figure 3. The relative error between the image-derived

Table 1. Optimal threshold values for the extraction of urban built-up areas in different districts of
China.

District Threshold Statistical area (km2) Extracted area (km2) Relative error (%)

Northeast China 8 31035 31741 2.27
North China 15 47259 47700 0.93
South China 19 22483 22341 −0.63
East China 22 28578 28476 −0.36
Central China 7 51260 50638 −1.21
Southwest China 7 28254 28025 −0.81
Northwest China 7 19823 20187 1.83
Inner Mongolia 6 11836 12508 5.68
Xinjiang 9 9702 9656 −0.47
Tibet 11 385 380 −1.47

Figure 3. Urban objects extracted from the nighttime light image of China. Each object is coded in
a unique color.
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urban area and statistical urban built-up area is less than 5% for all regions, except for the
Inner Mongolia region where the relative error is 5.68% (Table 1). The Yangtze River
Delta region was selected as the case study area to estimate the accuracy of urban areas
extracted from DMSP-OLS data. The urban and non-urban areas interpreted from Landsat
data were regarded as the ground truth. The evaluation showed that the overall accuracy
of DMSP-OLS-derived urban areas was 90.60% and the Kappa index was 0.79. The
estimated accuracy values were comparable with previous studies (Liu et al. 2012, Yang
et al. 2013, Shi et al. 2014a). We thus believe that the extracted urban areas in this study
can well represent the urban landscape patterns of China.

3.2. Identifying urban objects

3.2.1. Urban objects identification

The urban built-up areas extracted from DMSP-OLS nighttime light image comprise a
series of urban patches. Each urban patch consists of spatially connected urban pixels.
Urban patches detected in the nighttime light image can be regarded as the generalized
urban built-up areas at a spatial resolution of 1 km. Small urban patches may correspond
to separate urban districts of the same city, and large urban patches may cover the entire
city or several cities in a metropolitan area. In this study, an urban patch is treated as the
basic spatial unit in the analysis and referred to as an urban object. We adopted an object-
based approach to explicitly represent and characterize urban patches as urban objects.
The object-based approach is able to extract semantic information (size, shape, texture,
and contextual) of urban objects and the spatial relationships (e.g., proximity relationship)
between urban objects.

A recursive connected-region labeling algorithm (Liu et al. 2004, Yu et al. 2010) was
employed to explicitly mark out the urban objects based on the spatial 4-connectivity of the
foreground urban pixels. The derived urban objects are each indexed incrementally with a
unique ID number. Two types of morphological operations, a filling operation and a closing
operation, are applied to the urban objects to smooth urban object boundaries. After that, a
threshold value of the object size is selected to remove small spurious objects, which might be
induced by data noise. In total, 2052 urban objects were detected in China finally (Figure 3).

3.2.2. Attributes of urban objects

The size, shape, and other geometric attributes of urban objects can be used to analyze
urbanization progress and urban spatial clusters. We calculate planimetric attributes and
shape attributes for characterizing each urban object. The planimetric attributes depict the
geographical location, horizontal dimensions, and size of an urban object, including
centroid location (�x, �y), perimeter (P), area (S), length (LEN), and width (WID). The
shape attributes for characterizing the planar geometric morphology of urban objects
include compactness index (CI), elongatedness (ELG), orientation (Φ), rectangularity
(REC), ellipticity (ELP), and triangularity (TRI). The definitions of those spatial attributes
for urban objects are shown in Table 2. More detailed definitions are also available in Liu
et al. (2010). Minimum bounding rectangle and best-fit ellipse are also fitted to graphi-
cally represent the shape of each urban object (patch) (Liu et al. 2010).

The 10 largest urban objects by size are shown in Figure 4, with their minimum
bounding rectangles and best-fit ellipses. The locations of main cities are overlaid with the
urban objects. Table 3 shows the attributes of the 10 largest urban objects. It should be
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noted that many large urban objects contain more than one city, thus being referred to as
urban agglomerations. For example, the urban object (ID 1966) in the Pearl River Delta
contains eight municipal cities, including Guangzhou, Shenzhen, Dongguan, Foshan,
Zhongshan, etc. Shanghai, Suzhou, Jiaxing, Wuxi, and Changzhou are contained in the
urban object (ID 1266) in the Yangtze River Delta. The third largest urban object (ID 511)
encloses three municipal cities, including Beijing, Tianjing, and Langfang. Meanwhile,
several major cities each form a separate urban object, such as Wuhan (urban object ID
1425) and Chongqing (urban object ID 1553).

3.3. Representing spatial proximity relations between urban objects

3.3.1. Computing minimum distance between the boundaries of urban objects

Different types of distance between cities have been used to measure their proximal
relations. Conventionally, cities are often simplified as point features and their spatial
locations are represented by the geographical positions of city centers, which are desig-
nated either by city halls (municipal government) or by the centroid points of municipal

Table 2. Definitions of spatial attributes for an urban object.

Attributes Definition

Centroid location
(�x, �y), �x ¼ 1

n

Pn
i¼1

xi�y ¼ 1
n

Pn
i¼1

yi

n is the number of cells consisting of an urban object, xi and yi are the row and
column coordinates of the ith cell of the object.

Perimeter (P) P ¼ m1CS þ ffiffiffi
2

p
m2CS

m1 is the number of boundary cell in horizontal or vertical orientation, m2 is
the number of boundary cell in diagonal step, and CS is the grid cell size.

Area (S) S ¼ nCS2

Length (LEN) Length of the minimum bounding rectangle surrounding the urban object.
Width (WID) Width of the minimum bounding rectangle surrounding the urban object.
Compactness index
(CI) CI ¼ 4πS2

P
Elongatedness
(ELG)

ELG ¼ LEN
WID

Orientation (Φ)
Φ ¼ 180

2π
arctan

2μ11
μ20 � μ02

� �

μpq ¼
Xn
i¼1

xi � �xð Þp yi � �yð Þq

μpq are the central moments,Φ is defined as an angle in degree between the x-axis
and the major axis of the best-fit ellipse measured counterclockwise [0, 180°].

Rectangularity
(REC)

REC ¼ S
LEN �WID

Ellipticity (ELP)
ELP ¼

�
16π2 � AMI ; if AMI � 1�

16π2
1

16π2 �AMI ; otherwise

AMI ¼ μ20 μ02�μ211
μ400

AMI is the affine moment invariant.
Triangularity (TRI)

TRI ¼
�
108 � AMI ; if AMI � 1=108

1
108�AMI ; otherwise

Source: Liu et al. (2010).
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administrative areas for the sake of convenience (Zhou 1991, Batten 1995, Dematteis
1997, Assuncao et al. 2006, Chen et al. 2006). The distance between the city centers was
computed to quantify their spatial proximity in previous studies (Portnov et al. 2004, Luo
et al. 2009, Terzi et al. 2011).

However, in reality, a city is a two-dimensional space with various shapes. Social,
economic, and cultural activities, along with material, energy, information, and population
flows occur not merely in the city center, but also across the whole built-up area. For
instance, some large manufacturing plants may be located near the boundary of a metro-
politan area due to low land price. Meanwhile, some residential districts of a city may house
a large number of people who work in other nearby cities. The everyday journey-to-work
between cities supports the operations of those manufacturing plants and many other urban
economic activities. Although conceptually and computationally easy and simple, a point-
based representation may greatly distort the proximal relation of polygonal objects (Okabe
et al. 1996) and hence result in spurious and unrealistic urban clusters.

As shown in Figure 5(a), there are seven hypothetical urban objects (polygons) in the
region. If the polygonal urban objects are simplified as point features and represented by
their centroid points (the stars in Figure 5(b)), four small spatial clusters of points are
identified using the distance between points (Figure 5(b)). This clustering result is very
different from that visually grouped based on the proximity of polygonal urban objects
(Figure 5(a)). To obtain reliable spatial clustering result, it is critical that urban objects are
treated as polygonal features rather than as point features and the proximity between urban
objects should be measured by the distance between their boundaries rather than by the
distance between their centroid points.

The MST in graph theory is used in this study to represent spatial proximity relationships
between urban objects. An edge-weighted linear graph (G) is an ordered pair G = (V, E)

Figure 4. The 10 largest urban objects with their minimum bounding rectangles and best-fit
ellipses.
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comprising a set of vertices called nodes (V) and a set of node pairs called edges (E). In our
case, a node represents an urban object. An edge Emn between urban objects Om and On is
associated with a weight (Wmn), which is the minimum distance between the boundaries of
those objects (Equation (2)). A path in a graph is a sequence of edges joining two nodes
(objects) and a circuit is a path where the first and the final nodes are the same. A tree is a
connected and undirected graph with no circuits. A spanning tree is a tree in which all the
nodes of G are connected together by edges. A MST is a spanning tree whose total weight of
all edges is the smallest among all possible spanning trees generated from the nodes.

Wmn ¼ min dmnf g (2)

where dmn is the distance between the pixels located at the boundaries of urban objects Om

and On.
Each edge in theMSTof urban objects links one urban object with its nearest urban object,

and the weight of the edge represents the shortest distance between the boundaries of the two
nearest urban objects. TheMST, with the minimumweight among all possible spanning trees,
represents the nearest spatial proximity of all urban objects in the whole region.

3.3.2. Generating MST to represent proximal relations among urban objects

Different algorithms (Pettie et al. 2002, Assuncao et al. 2006) have been proposed to
generate MST for point features. As illustrated above, it is critical to use the distance
between objects’ boundaries to generate and recognize clusters of urban objects. The
computation of the distance between objects’ boundaries and associated MST is much
more complicated than the creation of the MST directly based on the distance between
objects’ centroid points. Since there is no computational tool readily available, we
developed a new algorithm to calculate the minimum distance between urban objects
and create the MST simultaneously.

Our new algorithm is based on a recursive competitive propagation scheme. The d∞-
propagation algorithm proposed by Eggers (1998), a type of distance transformation
method, is used to expand the border pixels of each object step by step to calculate the
minimum distance between a pair of urban objects. The algorithm starts with detecting
and recording the inner boundary Bk for each urban object Ok in the region using an inner
boundary tracing algorithm. Then, the urban object whose ID is 0 (O0) is regarded as the
first node and included into the MST. The pixels in the boundary of urban object O0 are
propagated outwards recursively using the d∞-propagation algorithm (Eggers 1998). The
propagation will pause when encountering the first other urban object s (Os). The urban
object s (Os) is considered a new node of the MST, and Os as well as the edge between

Figure 5. Object clustering based on different criteria: (a) clusters based on object boundaries and
(b) clusters based on distance between object centroids.
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urban objects O0 and Os are included into the MST. The distance between O0 and Os is
recorded as the propagated distance of O0. Then, the objects with minimum propagated
distance are selected from those objects (nodes) already included in the MST to propagate
simultaneously. The propagated distance values of objects are updated immediately after
propagation. If the propagation of any propagating object meets first urban object not
included in the MST, the object and the corresponding pair of objects (edge) will be added
to the MST. The recursive competitive propagation will stop when all the objects are
included in the MST.

The constructed MST for the urban objects of mainland China is shown in Figure 6.

3.4. Identifying urban object clusters by partitioning MST

3.4.1. MST partition based on the Gestalt theory

Spatial clustering can be realized by partitioning the MST appropriately into different
subtrees. Each subtree stands for a targeted spatial cluster. The only principle for the
partitioning process is to find the tree edge with a significantly heavy weight that can
distinguish itself from other subtree edges.

As Wertheimer (1958) enunciated, proximity is the most rudimentary element of all
Gestalt principles that govern the way of our perceptual process in organizing the raw
sensory data of various spatial patterns presented to our eyes. Zahn (1971) developed an
effective graph-theory method for detecting and describing Gestalt clusters in an arbitrary
point set. Based on MST, his method detects inherent spatial separations (inherent spatial
distance) between subsets (clusters) of a given point set and then extracts the grouping
patterns that are compatible with our own visual perception of the two-dimensional point
sets (Zahn 1971).

Figure 6. The generated and partitioned minimum spanning tree for urban objects based on the
minimum distance between their boundaries.
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We adapted Zahn’s (1971) algorithm to handle polygon type of features, urban
objects, in contrast to the point data set. We formulated the urban object clustering
problem into an MST partitioning problem. In the MST, the weight for an edge Exy is
represented by the minimum distance between urban object Ox and Oy. Following the
Gestalt principle, we adopt a similar strategy as in Zahn (1971) to partition the MST. The
tree partition is realized by removing edges satisfying certain conditions in an MST.
Removing an edge will divide the tree into two disjoint non-empty subtrees. After
removing all the edges satisfying certain conditions, the resulting subtrees with more
than 2 nodes (objects) can be considered as spatial clusters.

For an edge Exy in a tree, if its weight Wxy is significantly larger than the average
weight of nearby edges, it is labeled as inconsistent edge and will be removed. Similar to
Zahn (1971), we use two indicators to define an inconsistent edge to be cut off. One
indicator is the ratio of the weight Wxy for edge Exy to the average weight of its nearby
edges. The other is the ratio of the weight difference between Wxy for edge Exy and the
average weight of its nearby edges to the standard deviation of those edges’ weights.
When one of these two ratios is larger than a threshold value, the edge is considered to be
inconsistent and then cut off from the tree. The standard deviation and average of weights
for each node object (Ox or Oy) in edge Exy are calculated based on a sample of nearby
edges, which are the ones within a specific step length to that node. In our study, the step
length is 2. As shown in Figure 7, edges a, b, and c are within 1 step to node Oy whereas
edges e and d are within 2 steps to node Oy.

The inconsistency of an edge is evaluated based on the following rules in our algorithm:

For edge Exy,
If the Wxy > W0 Then
If Wxy > A0 �Wx STð Þ Or Wxy > A0 �Wy STð Þ Then

the edge XY is inconsistent
Else IfWxy >Wx STð Þ + A1 � STD Wxð ÞOrW(XY) >Wy STð Þ + A1 � STD Wy

� �
Then

the edge Exy is inconsistent
Else

the edge Exy is consistent
Else
the edge Exy is consistent

Figure 7. Definition of nearby edges of the node in MST.
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W0 is a user-defined threshold weight of the edge. As demonstrated by Portnov (2004),
clear similarities can be detected between the core city and neighboring towns within
20–40 km distance range. However, Portnov’s distance is calculated between the geo-
metric centers of two cities. As we use the distance between two city’s boundaries, the
threshold value is set as 15 km, i.e., W0 = 15 km. If the minimum distance between two
cities is less than 15 km, the edge connecting them will be directly assigned as a
consistent edge. Wx STð Þ and Wy STð Þ are the average weights for nodes Ox and Oy,
respectively, in edge Exy based on the sampled edges. STDðWxÞ and STDðWyÞ are the
corresponding standard deviations of weights for nodes Ox and Oy in edge Exy. The
sampled edges consist of all the edges that have ST step length to the node. A0 and A1

are the ratios of the average and standard deviation. The values of ST, A0, and A1 are set to
2, 2, and 3, respectively.

All the edges in the MST will be checked through the processes described above.
Figure 6 shows the subtrees after removing the inconsistent edges.

3.4.2. Urban spatial cluster identification

After the MST partitioning operation, the urban objects connected by the same subtree
will be considered as an urban spatial cluster. Each urban spatial cluster (subtree) is
assigned a unique ID, and all the urban objects connected by the same subtree will be
identified as the members of an urban cluster. In total, we detected 521 urban spatial
clusters in China as shown in Figure 8.

Figure 8. The urban clusters classified according to the partitioned minimum spanning tree; urban
objects belonging to an urban cluster are coded in the same color.
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3.5. Derivation of spatial attributes of urban spatial clusters

A set of attributes are defined and calculated to characterize the urban spatial clusters. The
planimetric and shape attributes are also useful for characterizing the morphology and the
development level of urban spatial clusters. The planimetric attributes of the urban spatial
cluster include centroid location (xc, yc), area (Sc), length (LENc), and width (WIDc). The
definitions are the same as those of urban objects (Table 2). The 10 largest urban spatial
clusters by area are shown in Figure 9. The shape attributes of the urban spatial cluster
include elongatedness (ELGc), orientation (Φc), fractal dimension (Dc), rectangularity
(RECc), ellipticity (ELPc), and triangularity (TRIc). Except for fractal dimension, the
definitions of other shape attributes are the same as those of urban objects (Table 2).
For an urban spatial cluster, the fractal describes the homogeneity of the spatial distribu-
tion of urbanized areas in a region (Tannier et al. 2005). The fractal dimension of the
urban spatial cluster (Dc) is defined in Equation (3).

Dc ¼ lim
r!0

lnC rð Þ
ln rð Þ (3)

where r is a distance scale and C(r) is a spatial correlation function (Equation (4)) of a
specific urban spatial cluster.

C rð Þ ¼ 1

Num Obj� 1ð Þ2
XNum Obj�1

i¼0

XNum Obj�1

j¼0

H r � dij
� �

i�j (4)

H r � dij
� � ¼ 1 r � dij � 0; i�j

0 r � dij < 0; i�j

�
(5)

Figure 9. Ten largest urban spatial clusters and their fitted geometries.
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where Num_Obj is the number of urban objects in an urban spatial cluster, dij is the
minimum distance between the boundaries of urban objects Oi and Oj. H(r − dij) is the
Heaviside step function (Equation (5)), which is used to count the number of urban object-
pairs whose distances are less than the distance scale r. r is an adaptable distance scale
decreasing from dmax = max{dij} to dmin = min{dij} with a decrement of Δd each time. In
our analysis, Δd is set as 10 km.

For each distance scale rk = dmax − k*Δd, the number (nk) of urban object-pairs whose
distance is less than rk will be counted. Consequently, at this distance scale, C(rk) = nk/
(Num_Obj − 1)2. After the numbers of object-pairs at all distance scales are counted, we
get two series of corresponding data sets, r = {r0, r1, r2, …, rk} and C rð Þ = {C(r0), C(r1),
C(r3), …, C(rk)}. Then Dc is given by the slope of a linear regression applied to (ln �r, ln
C rð Þ) (Equation (3)).

The minimum bounding rectangle (Figure 10(a)) and best-fit ellipse (Figure 10(b)) are
also utilized to fit and represent urban spatial clusters. A minimum convex hull (MCH) is
defined as the smallest polygon containing all the sampling points, in which any line
connecting any two points within the polygon must lie entirely within it. In addition, an
MCH has been proved to be a higher-quality geometric approximation of geographical
features (Frontiera et al. 2008). In our method, the MCH of an urban spatial cluster
(Figure 10(c)) is used to delineate the relatively regular shape of the cluster. The minimum
bounding rectangles, best-fit ellipses, and MCHs of the 10 largest urban spatial clusters by
area are shown in Figure 9.

In this study, an urban spatial cluster is identified as a subtree in the MST partition
process. The properties of each subtree also reflect the constituent structural characteristics
of the urban spatial cluster. We define a set of properties, including the number of urban
objects (NUM_OBJ) and the number of edges (NUM_EDGE) in a cluster, maximum
(MAX_OBJ_S), minimum (MIN_OBJ_S), average (AV_OBJ_S), and standard deviation
(STD_OBJ_S) of objects’ area in a cluster, maximum (MAX_EDGE_W), minimum
(MIN_EDGE_W), average (AV_EDGE_W), standard deviation (STD_EDGE_W), and
sum (SUM_EDGE_W) of edges’ weights in a cluster, compactness index (MCH_CI) of
MCH, the ratio of the area of urban objects in a cluster to the area of MCH
(R_OBJ_MCH_S), and the primacy ratio of urban objects in an urban spatial cluster
(PRI_R_OBJ). The numerical definitions of these attributes are shown in Table 4.

Main municipal cities contained by these clusters are identified and listed in Table 5.
We also computed the morphological attributes (Table 6) and constituent structural
attributes (Table 7) of the 10 largest urban spatial clusters. These attributes are combined
to provide a comprehensive description of the urban spatial clusters.

Figure 10. The fitted geometry of an urban spatial cluster: (a) minimum bounding rectangle,
(b) best-fit ellipse, and (c) minimum convex hull.
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4. Discussions

4.1. Urban spatial cluster analysis

We analyzed the development and spatial morphology of urban spatial clusters in terms of
their spatial extent, members, and inner connections from our object-based analysis. The
urban spatial cluster located in the Yangtze River Delta is used to illustrate the spatial
organization or structure of an urban cluster (Figure 11 and Table 8).

Table 4. The definitions of the attributes for the constituent structure of an urban spatial cluster.

Attributes Definition

Number of urban objects in a cluster
(NUM_OBJ)

NUM OBJ ¼ Count Of g
O is the urban objects in an urban spatial cluster.

Number of edges in a cluster
(NUM_EDGE)

NUM EDGE ¼ Count Ef g
E is the edges in the subtree of an urban spatial cluster.

Maximum area of objects in a cluster
(MAX_OBJ_S)

MAX OBJ S ¼ maxNUM OBJ�1
i¼0 Sif g

Si is the area of the ith urban object in an urban spatial
cluster.

Minimum area of objects in a cluster
(MIN_OBJ_S)

MIN OBJ S ¼ minNUM OBJ�1
i¼0 Sif g

Average area of objects in a cluster
(AV_OBJ_S) AV OBJ S ¼ 1

NUM OBJ

XNUM OBJ�1

i¼0

Si

Standard deviation of objects’ area in a
cluster (STD_OBJ_S) STD OBJ S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNUM OBJ�1
i¼0 Si � AV OBJ Sð Þ2

NUM OBJ

s

Maximum weight of edges in a cluster
(MAX_EDGE_W)

MAX EDGE W ¼ maxNUM EDGE�1
i¼0 Wif g

Wi is the weight of the ith edge in an urban spatial cluster.

Minimum weight of edges in a cluster
(MIN_EDGE_W)

MIN EDGE W ¼ minNUM EDGE�1
i¼0 Wif g

Average weight of edges in a cluster
(AV_EDGE_W) AV EDGE W ¼ 1

NUM EDGE

XNUM EDGE�1

i¼0

Wi

Standard deviation of edges’ weight in
a cluster (STD_EDGE_W) STD EDGE W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNUM EDGE�1
i¼0 Wi � AV EDGE Wð Þ2

NUM EDGE

s

Sum weight of edges in a cluster
(SUM_EDGE_W) SUM EDGE W ¼

XNUM EDGE�1

i¼0

Wi

Compactness index (MCH_CI) of
MCH MCH CI ¼ 4πSMCH

2

PMCH
SMCH is the area of the MCH and PMCH is the parameter of
the MCH of an urban spatial cluster.

Ratio of the area of urban objects in a
cluster to the area of MCH
(R_OBJ_MCH_S)

R OBJ MCH S ¼ Sc
SMCH

Primacy ratio of urban objects in an
urban spatial cluster (PRI_R_OBJ) PRI R OBJ ¼ S1st

S2nd
S1st and S2nd are the areas of the 1st and 2nd largest urban
objects in an urban spatial cluster.
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The artificial light in night sensed in the space indicates intensive human activities.
Urban objects derived from the nightlight image represent discrete urban built-up patches.
Some large urban objects cover the entire built-up area of a single municipal city, while
other large objects may contain urban built-up areas of several adjacent municipal cities.
The urban built-up areas of the municipal cities contained in the same urban object appear
as a geographically continuous lit urban region in DMSP-OLS nighttime light image. The
urban objects are the basic components of an urban spatial cluster, and we define the large
urban object that contains two or more municipal cities as an Urban Agglomeration (UA).

Table 5. The main municipal cities lying in the 10 largest urban clusters in the order of area.

Rank
Cluster
ID

Area
(km2)

Number
of cities Main cities

1 294 20887 20 Shanghai Shaoxing Zhoushan Hangzhou Guichi
Ningbo Huzhou Tongling Xuanzhou Jiaxing
Suzhou Wuhu Wuxi Chaohu Maanshan
Changzhou Nantong Zhenjiang Yangzhou Nanjing

2 210 17855 14 Zhengzhou Luoyang Luohe Pingdingshan Xuchang
Xingtai Zhumadian Kaifeng Xinyang Jiaozuo
Xinxiang Hebi Anyang Handan

3 501 15460 10 Guangzhou Zhuhai Jiangmen Zhongshan Qingyuan
Shenzhen Foshan Dongguan Zhaoqing Huizhou

4 150 11042 4 Beijing Tianjing Langfang Baoding

5 97 8653 11 Shenyang Yingkou Anshan Panjing Liaoyang
Benxi Fushun Huxin Tieling Jingzhou
Huludao

6 264 6081 8 Xi’an Shangzhou Xianyang Weinan Baoji
Sanmenxia Yuncheng Tongchuan

7 201 5704 5 Jinan Weifang Zibo Binzhou Dongying

8 195 5034 3 Taiyuan Yuci Linfen

9 337 4662 3 Chengdu Mianyang Deyang
10 471 3785 3 Kunming Yuxi Gejiu

Table 6. Morphological attributes of the 10 largest urban clusters in the order of area.

Cluster
ID

Sc
(km2) xc yc

LENc

(km)
WIDc

(km) ELGc Φc Dc RECc ELPc TRIc

294 20887 1444.39 3420.54 445.69 274.44 1.62 22.00 0.95 0.17 0.05 0.08
210 17855 774.41 3752.91 480.81 250.10 1.92 92.75 0.84 0.15 0.04 0.06
501 15460 888.58 2414.31 211.42 141.64 1.49 13.75 0.64 0.52 0.50 0.73
150 11042 988.05 4306.35 243.65 187.77 1.30 56.95 0.83 0.24 0.11 0.16
97 8653 1458.05 4585.91 353.68 182.77 1.94 136.86 0.93 0.13 0.03 0.05
264 6081 368.55 3680.50 367.47 118.59 3.10 165.73 0.82 0.14 0.04 0.05
201 5704 1139.91 4023.44 257.65 132.55 1.94 162.19 0.72 0.17 0.05 0.08
195 5034 593.35 3956.69 437.54 89.15 4.91 113.66 0.70 0.13 0.03 0.05
337 4662 −80.25 3268.46 193.57 81.65 2.37 122.20 0.73 0.29 0.16 0.24
471 3785 −217.42 2560.61 286.25 117.52 2.44 74.68 0.66 0.11 0.02 0.03
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The largest urban object (object 1266, see Figure 11) in the Yangtze River Delta, which
contains five main municipal cities, including Shanghai, Wuxi, Suzhou, Changzhou, and
Jiaxing, and eight other cities (see Table 8), is a typical urban agglomeration. With the top
economic competitiveness in China, Shanghai serves as the main driving force for
economic development and urbanization in the Yangtze River Delta area (Jiang et al.
2010). In order to lower the operation cost, many companies in Shanghai select the
neighboring cities, such as Suzhou and Wuxi, as the locations for manufacturing plants
and warehouses. Meanwhile, new residential districts of the neighboring cities of
Shanghai are booming not only around their own city cores but also in the area adjacent
to Shanghai in order to house residents from the nearby metropolises. Since the built-up
areas of the cities in the region are geographically so close together, they cannot be
separated in the nighttime light satellite image, and thus form a large urban agglomeration.

An Urban Spatial Cluster (USC) contains two or more urban objects. Although there
is apparent spatial separation between urban objects, these urban objects have strong
spatial interaction due to the relatively close geographical proximity and therefore can be
considered as an integrated urban spatial unit.

Figure 12 is the tree view of the urban objects in an integrated urban spatial cluster in
the Yangtze River Delta region. Large urban objects, namely urban agglomerations, are
shown in the tree as nodes that have multiple edges connecting to other urban objects. For
example, besides the largest urban object-Shanghai (object-1266), urban object-Nanjing

Figure 11. The three levels of urban spatial units located in the Yangtze River Delta.
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Figure 12. The tree view of urban spatial cluster in the Yangtze River Delta.

Figure 13. Urban spatial cluster developing along with expressway.
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(object-1253) and urban object-Hangzhou (object-1386) have four and five linked edges,
respectively. Those urban agglomerations (nodes) serve as the economic and social hinges
and have a wide influencing domain (Liang 2009) in the urban cluster.

Urban spatial clusters detected by our method show close resemblance to the regional
network of cities delineated by Gu et al. (2008) based on the strength of territorial
relations, which are defined as the social and economic proximity relationship between
neighboring cities (Dematteis 1997). For instance, the Shanghai urban system identified
by Gu et al. (2008) includes most of the cities in the detected urban spatial cluster
(Table 8) except for City Guichi. For the remaining urban clusters listed in Table 5,
their member cities (urban objects) are largely in line with those cities in the correspond-
ing urban systems described in Gu et al. (2008). Unlike the economic and social
proximity, our urban cluster analysis based on spatial proximity can depict the spatial
patterns and links of cities in a more objective and direct manner. The hierarchical level of
the cities in the region can be identified from the geographical-proximity-based graph.
The nodes in the graph have locational advantages in the development of the region.

In our regionalization, an MCH is used to delimit a continuous region that contains all
urban objects in an urban spatial cluster and their immediately surrounding rural areas.
Some small urban objects that do not belong to the urban spatial cluster may also be
contained in the MCH. The MCH of urban spatial cluster is referred to as the Urban
Spatial Cluster Influencing Region (USCIR) in this study. The area inside the MCH is
strongly influenced and supported by the core urban agglomerations (objects). The urban
spatial cluster influencing region (see Figure 12) defined by the MCH of the Yangtze
River Delta urban cluster exhibits geometric similarities with the urban influence domain
defined by Liang (2009) based on the gravity model and social-economic statistical data
(such as GDP and population) of each city. All the urban spatial clusters in Figure 9(b)
also appear in Liang’s delineation of the 15 largest urban influence domains (Liang 2009).

4.2. Form and evolution of urban spatial clusters

The spatial distribution and evolution of urban spatial clusters are influenced jointly by
various factors, such as topography, stream drainage system, economy, and transportation.
Among them, natural environment, for example topography, usually determines the form
and expansion direction of an urban spatial cluster (Thapa et al. 2011). For cities located
in a mountainous region, their spatial expansions are surely more restricted. Improved
transportation condition often stimulates urban expansion outward (Duranton et al. 2012).

The numerical attributes derived for urban spatial clusters provide a useful set of
indicators for diagnosing their development stage, driving forces and possible problems.
As shown in Figure 13, the largest urban object in the urban cluster (ID 195) (see Table 5)
in Shanxi Province, China, contains City of Taiyuan, the capital of Shanxi Province. The
expressways apparently played an important role in the formation and evolution of this
elongated urban spatial cluster. The high elongatedness value (ELGc = 4.91) reflects the
formation of the urban spatial clusters along a transportation corridor. In addition, it is
apparent that the spatial pattern of the clustered edges of this cluster is consistent with that
of the expressways in the region. Therefore, the MST can reflect the structure of
transportation network to a certain degree.

In an urban spatial cluster, the leading urban agglomeration (the largest urban object)
is the core and focus of the cluster. The primacy ratio of urban objects in an urban spatial
cluster (PRI_R_OBJ) indicates the level of dominance of the leading urban agglomeration
in that cluster. The urban spatial cluster (ID 501) in the Pearl River Delta region has the
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highest PRI_R_OBJ value (73.90) among the 10 largest clusters (see Table 7). The largest
urban object (ID 1966) (see Table 3), which contains Guangzhou, Shenzhen, Zhuhai, and
other cities, plays the dominant role in the formation of the Pearl River Delta urban
cluster.

The sum (SUM_EDGE_W) and average (AV_EDGE_W) of edge weights in a cluster are
two indicators for quantifying the overall spatial proximity and the corresponding level of
spatial integration and interaction between urban objects in a region. Normally, the urban
spatial cluster with lower SUM_EDGE_W and AV_EDGE_W values has higher spatial
integration level than others. As shown in Table 7, the urban spatial cluster (ID 501) in
the Pearl River Delta region has the lowest SUM_EDGE_W as well as AV_EDGE_W
values. This is because the Urban Agglomeration of Guangzhou (No. 1966 urban object)
is the unrivaled leading unit in the development of the region. It exerts a powerful
centripetal force to other cities in the region, which effectively results in an increasing
spatial concentration and interconnectedness of urban built-up areas of those cities.

4.3. Spatial distribution of cities in an urban spatial cluster

Spatial form and organization of an urban spatial cluster has a direct impact on the
efficiency of utilizing various natural or social resources in this area (Williams et al.
2000). Although there is no consensus on whether the compact city and compact urban
spatial cluster are sustainable forms for urban development, quantifying compactness is
unquestionably a useful way to assess the internal structure of an urban spatial cluster. The
level of urbanization and integration of an urban cluster can be measured by the fractal
dimension (Dc) and average edge weight (AV_EDGE_W). The fractal dimension for an
urban spatial cluster, ranging from 0 to 2.0, reflects the homogeneity of urbanization and
spatial integration in the region (Tannier et al. 2005). A small value of Dc indicates a
higher level of spatial concentration of urbanized areas in the region, and accordingly a
lower level of urbanization and spatial integration. A large fractal dimension value, on the
contrary, means a more dispersed and even spatial distribution of urbanized areas,
indicating a higher level of urbanization and spatial integration. The urban spatial cluster
(ID 501) in Table 6 with a relatively low fractal dimension (Dc = 0.64) indicates its
relatively lower level of urbanization and spatial integration, while the cluster (ID 294)
with Dc = 0.95 shows a relatively more balanced urbanization and higher degree of spatial
integration.

The fractal dimension and other attributes calculated in our study can be used to
quantify many other characteristics of the urban clusters, such as self-similarity, fragmen-
tation of spatial patterns at different scales, hierarchical organization, and nonlinear
dynamics (Tannier et al. 2005). Those characteristics are useful for us to understand the
development and the evolution of the urban spatial clusters.

5. Conclusions

Cities are interlinked and interdependent, based on the movement or exchange of goods,
services, materials, people, money, and information. Improving technologies in transpor-
tation and communication have drastically enhanced interactions between cities and
between cities and their hinterlands. Cities and towns are thus organized into an integral
urban system or network in a region or a country. The spatial structure of urban system is
successively transformed by the processes of innovation diffusion, control, migration, and
investment (Yeates et al. 1997), leading to the formation and development of extensive
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multi-nuclei and hierarchical urban spatial clusters. With the increasing pace of urbaniza-
tion worldwide, more and more urban spatial clusters have been emerged and expanded.
The scientific knowledge and critical information about urban spatial clusters are impor-
tant for monitoring and managing this mega-scale urbanization process. In this study, we
demonstrate that the object-based spatial clustering method along with synoptic remotely
sensed data provides an effective quantitative method for detecting and analyzing urban
spatial clusters.

This paper presents a novel object-based method for detecting and characterizing
urban spatial clusters from nighttime light satellite images. The method uses the MST
to represent spatial proximity relationships among urban objects. Unlike previous studies,
the distance between urban objects (i.e., the boundaries of urban built-up areas) rather
than urban centers are adopted to quantify the spatial proximity. We developed an object-
based competing propagation algorithm to compute the minimum distance between urban
objects and to construct the MST simultaneously. A method based on the Gestalt theory is
employed to partition the MST and to identify subtrees as urban spatial clusters.
Compared with the manual visual interpretation method, the urban spatial clusters
detected by our automated method are more objective and repeatable.

We have applied our method to the nighttime light satellite imagery and numerically
identified urban spatial clusters in China at the national scale. A set of morphological
attributes has been derived to depict the shapes and development levels of urban spatial
clusters. In addition, some structural attributes of urban spatial clusters are defined to
quantify the interconnectedness between urban objects in a cluster. Three levels of urban
spatial unit, including urban agglomeration, urban spatial cluster, and urban spatial cluster
influencing region, are delineated and used to characterize the relative strength of linkages
between cities. The empirical findings of this research portray the spatial organization of
China’s national urban system. Regional urban clusters or subsystems with different
spatial extents are clearly recognizable.

Our analysis results are consistent with previous studies, and also provide much
needed and multi-dimensional quantitative measures of the spatial distribution, constitu-
tion, hierarchical structure, and pattern of China’s national urban system. These measures
are of great value for researchers, city planners, administrators, and others alike to better
understand and manage the dynamics of this type of spatially extensive yet internally
connected and integrated urbanized areas. In the future, we will analyze the spatiotem-
poral variations of urban spatial clusters in China by applying our object-based spatial
clustering method to time series DMSP-OLS nighttime light images. We believe that our
method would find wide applications in urban geography studies with various remote-
sensing images.
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