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ABSTRACT: Based on a temperature anomaly time series from 16 international exchange stations in Xinjiang from
1957 to 2012, the multi-scale characteristics of temperature variability were analysed using the ensemble empirical mode
decomposition (EEMD) method. Regional differences in variation trends and change-points were also preliminarily discussed.
The results indicated that in the past 50+ years, the overall temperature in Xinjiang has exhibited a significant nonlinear upward
trend, and its changes have clearly exhibited an inter-annual scale (quasi-3 and quasi-6-year) and inter-decadal scale (quasi-10
and quasi-30-year). The variance contribution rates of each component demonstrated that the inter-annual change had a strong
influence on the overall temperature change in Xinjiang, and the reconstructed inter-annual variation trend could describe
the fluctuation state of the original temperature anomaly during the study period. The reconstructed inter-decadal variability
revealed that the climate mode in Xinjiang had a significant transformation before and after 1995, namely the temperature
anomaly shift from a negative phase to a positive one. Furthermore, there were regional differences in the nonlinear changes
and change-points of temperature. At the same time, the results also suggested that the EEMD method can effectively reveal
variations in long-term temperature sequences at different time scales and can be used for the complex diagnosis of nonlinear
and non-stationary signal changes.
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1. Introduction

With the growing effect of global warming on the envi-
ronment and socio-economic development, climate change
research has attracted broad attention from national gov-
ernment departments and the public (Intergovernmental
Panel on Climate Change (IPCC), 2007). In its latest report
for 2013, the IPCC has noted that the average global tem-
perature has increased by 0.85 ∘C (0.65–1.06 ∘C), and the
annual average temperature from 2003 to 2012 increased
by 0.78 ∘C relative to 1850–1900, a period of nearly 130
years (1880–2012), indicating that rapid global warming
is an indisputable fact (IPCC, 2013). In the context of
global warming, the temperature variation trend in China
has also been on the rise, but the warming process is
volatile with significant differences in time and space (Sun
and Lin, 2007). Domestic scholars have conducted many
research studies on temperature variation and its possible
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causes in China spanning periods from 50 years to over a
century (Wang et al., 1998; Ren et al., 2005; Zhao et al.,
2005; Li et al., 2010; Huang et al., 2011). While many
useful conclusions have been drawn, the findings differ in
each study, and it has become indisputable that the tem-
perature in China has changed significantly, with clear
regional features. Xinjiang, one of the main arid areas
in Northwest China, is characterised by a typical temper-
ate continental arid climate, and its temperature has risen
year-by-year in the context of global warming. Owing to
its natural geographic feature of ‘three mountains sand-
wiched between two basins’, the temperature variation in
Xinjiang is unique, and its temperature increase has been
synchronous with global and national warming but is sig-
nificantly higher in magnitude than global and national
warming (Li et al., 2006, 2012; Fan et al., 2011). Further-
more, the temperature variation also exhibits significant
seasonal and regional differences (Li et al., 2011, 2013;
Xu et al., 2013). Therefore, the study of temperature vari-
ation in Xinjiang has important practical significance and
scientific value in regards to global warming, which has
been of great concern.
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Climate change detection is one of the core issues in
climate change research, which plays a crucial role in accu-
rately estimating global and regional climate change trends
and understanding their causes (Sun and Lin, 2007). Cur-
rently, most researchers apply methods such as a mov-
ing average or polynomial, linear regression, empirical or
spline function fitting, singular spectrum analysis (SSA),
empirical orthogonal functions (EOF) and rotated empiri-
cal orthogonal functions (REOF) for the fitting of climate
change trends (Wei, 2007; Wu and Wu, 2010). In fact, the
climate system is a complex nonlinear system, and most of
the long-term variations in many climatic factors, includ-
ing temperature, exhibit nonlinear, non-stationary complex
processes of change, accompanied by a variety of scales
or periodic oscillations (Wu et al., 2007; Xu et al., 2013;
Xue et al., 2013; Franzke, 2014). Because of limitations
in the conventional methods used, neither an accurate nor
reasonable diagnosis is provided for the natural variabil-
ity of climate change in many climate change research
studies. To date, the understanding of the process of cli-
mate change in its basic form remains a major problem.
With the rapid development of signal detection technology,
Wu and Huang (2009) have proposed a new time series
signal processing method: the ensemble empirical mode
decomposition (EEMD). This method is a new develop-
ment of empirical mode decomposition (EMD), which
has stronger self-adaptability and local variation charac-
teristics based on the signal. These attributes can effec-
tively improve the ‘mode mixing’ issue of EMD, making it
suitable for non-stationary and nonlinear signal detection,
and it can gradually separate the oscillations at different
scales (intrinsic mode function, IMF) or the trend com-
ponents from the original signal (Wu and Huang, 2009).
EEMD is one of the latest methods to extract signal vari-
ation trends. Compared with other methods, it can more
efficiently extract trends and periodic information (Huang
et al., 2009; Shao et al., 2011; Li et al., 2012). Moreover,
in recent years, the EEMD method has been gradually
applied in the field of climate change research, and some
meaningful results have been achieved (Wu et al., 2011;
Kuo et al., 2013; Ji et al., 2014; Qian and Zhou, 2014).

The aim of this study is to explore the following issues:
(1) the oscillation and variation of time scale that have
characterised temperature changes in the past 50+ years
in Xinjiang, in particular, the evolutionary characteristics
of oscillation and variation at different scales; (2) the con-
tributions of oscillations at different scales to tempera-
ture changes and their significance or insignificance; (3)
the effect of the oscillation at each scale on the over-
all climate change in different periods; and (4) the rela-
tionship between temperature changes and regional dif-
ferences. To study the regional features of temperature
variation trends over Xinjiang in China, we propose the
EEMD method to extract variation at different scales in
the climatic signals from the climatic time sequence and
to conduct multi-scale analysis on temperature changes in
the past 50+ years in Xinjiang in the context of global
warming.

2. Materials and methods

2.1. Study area and data processing

Located in the northwestern part of China, Xinjiang
is a typical semiarid to arid area. It extends between
73∘40′–96∘23′E and 34∘25′–48∘10′N and covers an area
of 166.04× 104 km2 (Xu et al., 2013). The study area is
far from the sea, located in the hinterland of Eurasia, and
it belongs to a temperate and warm temperate arid region.
With its typical continental climate, abundant sunshine,
large temperature change magnitudes, scarce rain and
snow, dry climate and intense evaporation, it is one of the
most severely arid areas in the world. Owing to the lack
of a dense network of international exchange stations in
Xinjiang, only 16 international exchange stations with
the most continuous temperature records were selected to
cover the entire study area. In addition, to conduct com-
parative analysis with the temperature variation trends of
the areas surrounding Xinjiang, temperature data from six
representative meteorological stations with more complete
time series within a buffer area of 150 km outward from
the Xinjiang border were selected. The annual average
China meteorological station temperature data from 1957
to 2012 were provided by China Meteorological Data
Sharing Service System (http://cdc.cma.gov.cn/), while
data from foreign meteorological stations were provided
by the National Oceanic and Atmospheric Administration
(http://www.climate.gov/). To determine which data have
higher quality, the data have been subjected to extremum,
time consistency and other tests. Furthermore, missing
data for individual years from some meteorological
stations were interpolated by the ratio method; the uni-
formity inspection and revision of the temperature data
were conducted via RHtest software to eliminate data
sequence breakpoints or adverse effects on the quality of
the data resulting from migration of stations, instrument
replacement, operating errors of the observer and other
factors. The geographical distribution of the selected
meteorological stations in Xinjiang and the surrounding
areas is shown in Figure 1.

2.2. Methodology

To overcome the scale-mixing problem of the EMD
method, a new noise-assisted data analysis method was
proposed: the EEMD, which defines the true IMF compo-
nents as the mean of an ensemble of trials, each consisting
of a signal plus white noise of finite amplitude (Wu and
Huang, 2009). To allow better understand of the EEMD
method, the EMD method will be introduced first. The
EMD method has been developed for nonlinear and
non-stationary signal analysis, though only empirically.
With the EMD method, a signal is decomposed into
several IMFs, and after EMD processing, the frequencies
of the IMFs are arranged in decreasing order (high to
low), where the lowest frequency of the IMF components
represents the overall trend of the original signal or the
average of the time series data. Most importantly, each of
these IMFs must satisfy two conditions: first, the number
of extrema and the number of zero crossings must be
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Figure 1. A map of Xinjiang and the distribution of meteorological stations.

equal or differ at most by one; second, at any point, the
mean value of the envelope defined by the local maxima
and local minima must be zero.

With the above definition for IMF, any original signal
expressible as x (t) can be decomposed in the following
steps:

First, identify the local maxima and minima of the origi-
nal data x (t), then connect by a cubic spline line to produce
the upper and lower envelopes, respectively, to obtain the
local mean value of the corresponding data point m1 (t),
and define the difference between x (t) and m1 (t) as the first
component h1 (t) according to the following equations:

m1 (t) =
1
2

(
u1 (t) + u2 (t)

)
(1)

h1 (t) = x (t) − m (t) (2)

If h1 (t) does not meet the IMF conditions, regard it as the
new x (t), and repeat the steps in formula (1) and (2) k times
until h1k(t) is obtained as an IMF.

h1K (t) = h1(K−1) (t) − m1K (t) (3)

Designate C1 = h1k, and select a stoppage criterion defined
as follows:

SD =
T∑

t=0

[
h1(K−1) (t) − h1K (t)

h1(K−1) (t)

]2

(4)

Here, the standard deviation (SD) is smaller than a prede-
termined value. If the above process is repeated too many
times, the IMF will become a pure frequency modulation
signal with constant amplitude in the actual operation, pos-
sibly resulting in loss of its actual meaning. Therefore, SD
(generally 0.2–0.3) should be used as a criterion to stop
the sifting process; when the SD reaches a certain thresh-
old, sifting should stop. Once the first IMF component is

determined, the residue r1 (t) can also be obtained by sep-
arating C1 from the rest of the data, i.e.

r1 (t) = x (t) − C1 (5)

By taking the residue r1 (t) as new data and repeating steps
(1)–(5), a series of IMFs C2, C3 … can be obtained. The
sifting process is stopped until ri(t) becomes a monotonic
function or |ri(t)| is very small. Finally, the original signal
can be reconstructed as follows:

x (t) =
n∑

i=1

Ci (t) + rn (t) (6)

Although EMD has many merits, mode mixing also has
its shortcomings. Mode mixing not only causes serious
aliasing in the time–frequency distribution but also causes
the physical meaning of individual IMFs to be unclear.
To overcome the shortcomings of the mode mixing prob-
lem in EMD, EEMD method has been recently developed
for nonlinear and non-stationary signal analysis. The prin-
ciple of EEMD is simple, which includes adding white
noise to the data to be uniformly distributed over the entire
time–frequency space, where the bits of signals of dif-
ferent scales can be automatically designated to proper
scales of reference established by the white noise. In addi-
tion, the EEMD algorithm is straightforward and can be
described as follows: (1) add a white noise series to the
original signal; (2) decompose the signal with added white
noise into IMFs using EMD; (3) repeat steps (1) and (2)
with a different white noise series each time; and (4) obtain
the corresponding IMF components of the decompositions
and adopt the means of the ensemble corresponding to the
IMFs of the decompositions as the final result. Wu and
Huang (2009) noted that the amplitude size of the added
noise exerts little influence on the decomposition results
on the condition that it is limited, is not vanishingly small
or very large and can include all possibilities. Therefore,
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the application of the EEMD method does not rely on sub-
jective involvement; it is an adaptive data analysis method.

Because the data almost always contain noise, a natu-
ral question is whether a component (an IMF for EEMD)
contains a true signal or is only a component of noise.
To answer this question, a significance test based on the
Monte-Carlo method was used (Wu and Huang, 2004).
Next, the real IMF components were selected by exam-
ining the more detailed distribution of the energy with
respect to the period in the form of spectral function. The
energy density of the kth IMF can be defined as follows:

Ek =
1
N

N∑
j=1

||Ik (j)||
2

(7)

where N is the length of the IMF component and Ik(j)
denotes the kth IMF component. The white noise sequence
is tested by the Monte-Carlo method; then, a simple
equation that relates the energy density Ek and the aver-
aged period Tk is obtained:

ln Ek + ln
{

Tk

}
𝛼

= 0 (8)

As shown in the Figure 4 with ln
{

Tk

}
𝛼

as the x axis and

ln Ek as the y axis, then the relation between the energy
density and the averaged period can be expressed by a
straight line whose slope is −1. The IMF component of
the white noise series should be distributed on the line
in theory; however, the actual application produces little
deviation, so the confidence interval for the energy spec-
trum distribution of white noise is presented as follows:

ln Ek = − ln
{

Tk

}
𝛼

± 𝛼

√
2∕N e

ln

({
Tk

}
𝛼∕2

)
(9)

In the formula, 𝛼 is the significance level.
In this article, based on temperature anomaly time series

from 16 international exchange stations in Xinjiang from
1957 to 2012, the multi-scale characteristics of tempera-
ture variability were analysed using the EEMD method.
For decompositions, the ensemble number was 100, the
ratio of the SD of the added noise and that of the signal
to be analysed was 0.2. Furthermore, a statistical signif-
icance test of IMFs decomposed by the EEMD method
was conducted. In addition, to solve the overshooting and
undershooting phenomenon of the effect of the boundary
on the decomposition process, mirror-symmetric exten-
sion (Huang and Shen, 2005; Xue et al., 2013) was used
to address the EEMD boundary problem.

3. Results and discussion

3.1. Characteristics of temperature variation trend

As seen in Figure 2, the temperature in Xinjiang over
nearly 50 years presents an overall increasing trend. A
turning point appeared in the late 1980s and early 1990s,
before which the temperature was lower and after which
the temperature was higher. With respect to the time

Figure 2. Change in the temperature anomaly from 1957 to 2012 in
Xinjiang.

period, the temperature in Xinjiang was lower during 1957
to 1988 and showed a gradual increase in the 1960s, 1970s
and the early 1980s, suggesting that the temperature in
Xinjiang has also experienced a rise in the low-temperature
period. The temperature in Xinjiang was, overall, higher in
the 1990s, with large differences of up to 2.6 ∘C in temper-
ature each year during which an incidence of extreme tem-
perature would occur. The overall temperature remained
higher in the first 10 years of the 21st century, but it
was significantly higher than that of the later period,
and extreme temperature events have increased signifi-
cantly. Figure 2 shows that the temperature change is
not linear and shows a strong nonlinear variation trend;
the Xinjiang temperature change in the stationary test
also shows non-stationary results. Therefore, a nonlin-
ear method should be used to analyse the nonlinear and
non-stationary changes of Xinjiang temperatures.

The EEMD method has characteristics of
self-adaptability and locality in time, which is suitable for
the time–frequency analysis of nonlinear, non-stationary
time series. Therefore, the EEMD method can be used
to decompose time series of temperature anomalies in
Xinjiang during 1957 to 2012, and four IMF components
(IMF1-4) and one trend component (RES) can be obtained
(Figure 3). Each IMF component reflects the fluctuation
characteristics from high frequency to low frequency at
different time scales, and the final trend component repre-
sents the trend of the original data over time. Generally,
each IMF component has a physical meaning, reflect-
ing the oscillation of inherently different characteristic
scales in the original series. The actual physical meaning
contained in each IMF component at inherently different
characteristic scales can be determined by the significance
test, and different confidence levels indicate the strength of
the physical meaning. As shown in Figure 4, the horizontal
axis indicates the inherent scale characteristics (cycle) of
an IMF component, in which an IMF component closer
to the left in Figure 4 represents a higher frequency and a
shorter period. The longitudinal axis indicates the energy
spectral density of an IMF component, in which an IMF
component closer to the top represents a higher energy

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)
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Figure 3. The IMF and trend components of the temperature anomaly from 1957 to 2012 in Xinjiang.

Figure 4. Significance test for the IMF of the temperature anomaly from
1957 to 2012 in Xinjiang.

and greater amplitude. Figure 4 clearly shows that IMF1
and IMF2 fall between 90 and 95% confidence interval,
indicating that IMF1 and IMF2 are the more significant
components and contain more information with actual
physical meaning, while IMF3 and IMF4 fall between 80
and 90% confidence interval, indicating that they contain
less information with actual physical meaning. As seen in
Figures 3 and 4, the temperature changes from 1957 to
2012 in Xinjiang show relatively stable quasi periodicity;
the temperature in Xinjiang during the study period has
quasi-3-year (IMF1) and quasi-6-year (IMF2) climate
variability at the inter-annual scale and quasi-10-year
(IMF3) and quasi-30-year (IMF4) climate variability at
the decadal scale. These IMF components include not only
the periodic changes of climatic systems under external
forcing but also the nonlinear feedback of the climatic
system. Dai et al. (2007) analysed the temperature change
from 12 meteorological stations in Xinjiang during the

period from 1951 to 2005 by wavelet power spectrum
and found that the temperature change showed significant
periodic variations of 3 and 6 years at an inter-annual
scale and weak cyclical changes of 11 and 16 years at
an inter-decadal scale. This result is mostly consistent
with the inter-annual scale characteristics determined in
this study through the application of the EEMD method,
with some differences on the inter-decadal scale that may
be due to the differences in stations and study periods.
Long-term observational data of the time series will be
required to verify which results are more accurate. It is
commonly known that the wavelet transform has been
widely used in climate change detection (Gong et al.,
2005; Xu et al., 2011). Therefore, we selected different
wavelet bases and decomposition levels for the multi-scale
decomposition of temperature anomalies in Xinjiang and
found that if different wavelet bases and decomposition
levels are selected, the decomposition results exhibit
apparent differences (not shown), indicating that the
wavelet transform is not adaptive. Compared with the
wavelet transform, the EEMD method has stronger flex-
ibility and adaptability, the decomposition process is
simpler, and each component can clearly depict the signal
variation characteristics at different time scales.

The effect of the signal fluctuation frequency and ampli-
tude in each scale on the general characteristics of the
available raw data can be expressed as the variance con-
tribution rate. Table 1 shows the variance contribution rate

Table 1. Contribution rates of EEMD decomposition for temper-
ature anomaly.

IMF components IMF1 IMF2 IMF3 IMF4 RES

Period (year) 3 6 10 30
Contribution (%) 28.29 19.61 10.11 8.58 33.40
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of each component for the temperature anomaly. It is noted
that although there is less information with actual phys-
ical meaning included in IMF3 and IMF4, they are also
involved in the calculation of the variance contribution rate
in maintaining the total energy of the signal. When con-
necting Figure 3 and Table 1, the contribution of IMF1
towards temperature variance of the quasi-3-year is great-
est, reaching 28.29%. The amplitude of the temperature
strongly oscillates from a decrease–increase–decrease
trend and is significantly higher in the late 1960s, the late
1970s, early 1980s and 1990s than those of other time
periods. IMF2 contributes to approximately 19.61% of the
temperature variance of the quasi-6-year cycle, indicat-
ing higher temperatures in the late 1980s and early 1990s;
IMF3 contributes 10.11% of the quasi-10-year tempera-
ture variance, indicating a relatively larger amplitude in the
1960s to 1970s; IMF4 contributes to 8.58% of the tempera-
ture variance of the quasi-30-year cycle, indicating that the
temperature amplitude increases and the instability of vari-
ation increases on this time scale. The trend components
contribute up to 33.40% of the variance, indicating that
the overall average annual temperature in Xinjiang during
1957 to 2012 has a nonlinear rise with greater temperature
increases from the late 1980s, which is consistent with the
time of northwest climate transition defined by Shi et al.
(2002). Furthermore, studies have shown that with global
temperature changes over nearly 100 years, Europe and
China have also experienced a nonlinear complex process
of change (Sun and Lin, 2007; Wang and Li, 2011; Ji et al.,
2014), which indicates that the nonlinear complex process
of change for average annual temperatures in Xinjiang is
not an accidental phenomenon but an inherent reflection of
the complex climatic system, a global issue.

Table 1 shows the variance contribution rate of each
IMF component and also indicates that inter-annual oscil-
lations are dominant over inter-decadal oscillations in tem-
perature variation. Figure 5 shows the inter-annual and
inter-decadal temperature variations in comparison with
the original temperature anomaly series, in which the
inter-annual temperature is obtained by IMFs IMF1 and
IMF2, which represent the inter-annual temperature vari-
ation plus trend component, while the inter-decadal tem-
perature is obtained by IMFs IMF3 and IMF4, which are
representatives of the inter-decadal temperature variation
plus trend component. It can be determined that the recon-
structed inter-annual variation trend, which is virtually
consistent with the variation trend of original tempera-
ture anomaly series, can portray the fluctuations of the
original temperature anomaly series in the study period,
illustrating the dominant position of inter-annual oscil-
lations in Xinjiang temperature variation. Compared to
the original temperature anomaly series trend, the trend
component through EEMD can fully reflect the over-
all trend of the average annual temperature variation in
the Xinjiang region from 1957 to 2012. In addition, the
reconstructed inter-decadal temperature variation does not
adequately portray the temperature anomaly series vari-
ation throughout the study period, which may be due to
small-scale oscillations excluded from the reconstructed

Figure 5. Inter-annual and inter-decadal variations of temperature and
their comparisons with the original temperature anomaly.

inter-decadal temperature variation. Although the recon-
structed inter-decadal temperature variation does not ade-
quately portray the temperature variations in the late
1980s and early 1990s, it effectively shows that the
temperature variation process within the study period
can be divided into two distinct variation periods with
1995 as the boundary, before which the temperature rises
slowly and after which the temperature rises rapidly, sug-
gesting that the climate mode in Xinjiang before and
after 1995 has changed significantly from the original
negative-phase-dominated climate mode to the significant
positive-phase high-temperature mode.

3.2. The types of temperature variation trend and their
spatial distribution

As shown by the analysis in Section 3.1, the tempera-
ture in Xinjiang presents an overall increasing trend. In
fact, temperature variation trends in different regions are
not the same due to the complex topography, circulation
type and strength, and other factors. For a more detailed
analysis of temperature variation trends in each meteo-
rological station, this article has provided a morpholog-
ical analysis of temperature variation trend components
through EEMD and has found that morphological vari-
ations can be broadly divided into four categories: ris-
ing type, rising-decrease type, decrease-rising type and
decrease type. Table 2 shows the classification results of
16 meteorological stations in Xinjiang used in this article,
which includes a total of 10 meteorological stations for ris-
ing type, 3 for rising-decrease type, 2 for decrease-rising
type and 1 for decrease type.

The temperatures measured by the Xinjiang meteoro-
logical stations show an overall rising trend. Locations
mainly in the Northwest, the Southwest and the Ili River
Valley region of Xinjiang are directly affected by west-
erly circulation; the Kumul region is also affected as it is
located at the intersection of the westerly circulation and
Siberian High. Therefore, changes in circulation factors
may be an important reason for the overall rising temper-
atures in these regions. Altay, located at south foot of the
Altai Mountains, Karamay, located at northwest margin of

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)
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Table 2. Change trend types of temperature for 16 stations in Xinjiang and 6 stations in the areas surrounding Xinjiang.

Station Period (year) Trend type Transition time Station Period (year) Trend type Transition time

Altay 3, 6, 11, 50 Rising-decrease 1993 Kuqa 3, 6, 11, 26 Decrease 1982
Hoboksar 3, 6, 11, 50 Rising 1980 Kashgar 3, 6, 10, 26 Rising 1993
Karamay 3, 6, 10, 25 Rising-decrease 2005 Bachu 3, 5, 10, 27 Rising-decrease 2005
Jinghe 3, 6, 10, 28 Rising 1992 Tieganlike 3, 7, 10, 34 Decrease-rising 1965
Qitai 3, 7, 11, 42 Rising 1982 Charkhlik 3, 5, 10, 52 Decrease-rising 1975
Yining 3, 5, 10, 25 Rising 1984 Yarkand 3, 5, 10, 21 Rising 1989
Urumqi 3, 7, 11, 29 Rising 1983 Hotan 3, 5, 10, 29 Rising 1991
Turpan 3, 7, 14, 48 Rising 1990 Kumul 3, 5, 10, 29 Rising 1992
Lenghu 3, 5, 10, 20 Rising 1997 Mazongsha 3, 7, 10, 44 Decrease-rising 1988
Hovd 3, 6, 11, 28 Rising 1989 Kara Tjurek 3, 6, 11, 28 Rising 1993
Zharkent 3, 6, 11, 38 Rising 1989 Naryn 3, 6, 14, 39 Rising 1993

The transition time of rise and decrease types refers to the year that temperatures transitioned from negative phase to positive phase and vice versa.

the Junggar Basin, and Bachu, located at the south foot
of the Tianshan Mountains, show a rising-decrease trend;
Tieganlike and Charkhlik, located at the eastern margin
of the Tarim Basin, show a decrease-rising trend; Kuqa,
located at the central south of Tianshan Mountain, shows
a decrease trend. These three types of changes may be
controlled by the terrain. The reasons for the existence of
regional differences in temperature variation trends need
to be further explored. In addition, EEMD of temperature
observations was carried out at six meteorological stations
in the areas surrounding Xinjiang (Table 2). The results
showed that Mazongshan exhibited a decrease-rising trend
due to terrain and other factors, while the remaining five
meteorological stations showed a rising trend, which is
consistent with the overall rising trend in Xinjiang, indi-
cating that Xinjiang and the surrounding areas are similar
in temperature variation trend types.

To further portray the four types of variation trends, this
study has selected four typical meteorological stations for
further analysis: Jinghe (Figure 6(a)), Altay (Figure 6(b)),
Tieganlike (Figure 6(c)) and Kuqa (Figure 6(d)), represent-
ing rising type, rising-decrease type, decrease-rising type
and decrease type, respectively. Figure 6 shows the original
temperature anomaly series in four meteorological stations
in comparison with the resulting trend component through
EEMD. The results show that the temperature in the four
selected stations has a significant nonlinear variation trend,
which can depict the entire structure of temperature vari-
ation more accurately. In the four meteorological stations,
Jinghe temperatures showed a slight rise before 1992, fol-
lowed by a rapid rise; Altay temperatures showed a sig-
nificant rise before 1993, followed by a slow decrease;
Tieganlike temperatures showed a decrease-rising trend,
with a slight decrease trend before 1965 followed by a
rapid rising trend; Kuqa temperatures showed a significant
decrease trend in the positive phase prior to 1982, followed
by a slow decrease trend in the negative phase. In addition,
as seen in Table 2 and Figure 6, not only are temperature
variation trends different between the single stations and
all of Xinjiang, but the transition times of variations are
also quite different, indicating that temperature changes
are not fully synchronised between the meteorological sta-
tions of Xinjiang. The overall climate changes in Xinjiang

Figure 6. Temperature anomaly and its change trend at four typical
meteorological stations.

in 1995 are the result of the superimposed effect generated
by temperature variations in each station, which are con-
trolled to a large extent by the inherent change mechanism
of the climatic system and the local environment.

4. Conclusions

Based on the temperature anomaly time series from 16
international exchange stations in Xinjiang from 1957
to 2012, the multi-scale characteristics of temperature
variability were analysed using the EEMD method. The
main findings include the following:

1 In the past 50+ years, the overall temperature in Xin-
jiang exhibited a significant nonlinear upward trend,
and its changes clearly exhibited an inter-annual scale
(quasi-3 and quasi-6-year) and inter-decadal scale
(quasi-10 and quasi-30-year). In the four quasi-periodic
components, quasi-3-year (IMF1) and quasi-6-year
(IMF2) periodic fluctuation fall between 90 and 95%
confidence interval, indicating that IMF1 and IMF2
are the more significant components that contain more
information with actual physical meaning, while the
other two components (IMF3 and IMF4) fall within
the 80–90% confidence interval, indicating that they
contain less information with actual physical meaning.
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The variance contribution rate of IMF1 was largest,
reaching 47.8%; the contribution of IMF2 was also
large, reaching 28.4%; the variance contribution rates
of IMF3 and IMF4 were relatively less, with values
of 10.11 and 8.58%, respectively, which implied that
the inter-annual change had a strong influence on the
overall temperature change in Xinjiang.

2 The trend component through EEMD revealed that the
temperature variation in Xinjiang during 1957–2012
was an approximately linear (but actually nonlinear)
evolution process and that the average annual tem-
perature in Xinjiang had increased significantly since
the late 1980s. The reconstructed inter-annual variation
trend was virtually consistent with the variation trend
of original temperature anomaly series, which can por-
tray the fluctuations of original temperature anomaly
series in the study period. Although the reconstructed
inter-decadal temperature variation trends only roughly
portrayed the process of the temperature variation in
Xinjiang, it effectively showed that the temperature
variation process in the study period could be divided
into two distinct variation periods with 1995 as the
boundary, before which the temperature showed a slow
rise and after which the temperature rose rapidly, sug-
gesting that the climate mode in Xinjiang before and
after 1995 had changed significantly from the original
negative-phase-dominated climate mode to significant
positive-phase high-temperature mode.

3 The annual average temperature trend had clear regional
differences, which can be summarised into four types:
rising type, rising-decrease type, decrease-rising type
and decrease type. In addition, the transition time of
variations were quite different between the single sta-
tions and all of Xinjiang, indicating that the tempera-
ture variations at each meteorological station in Xin-
jiang were not fully synchronised and that the temper-
ature variation at each station was controlled to a large
extent by the inherent change mechanism of the climatic
system and the local environment. The deeper reasons
for the significant regional differences in temperature
variation trend and transition time need to be further
explored.

EEMD is one of the signal analysis methods applicable
to nonlinear and non-stationary series, which has signifi-
cant advantages in data analysis. When EEMD is applied
to time series of climatic elements, the reliable and real
signals of climate change can be extracted; in particular,
the intrinsic time scales of climate change can be avail-
able, which facilitates the separation of inter-annual and
inter-decadal variation trends from observation sequences
in several years and the separation of the general trend
of climate change from the time series of climatologi-
cal observations for several years, which will aid explor-
ing global or regional climate change issues. As climate
change is mainly controlled by internal variations of the
climatic system at the inter-annual scale, it shows signifi-
cant natural variability. However, at the inter-decadal scale,

climate change is affected by the combined effects of var-
ious factors and often mixed with external information,
resulting in more complex changes. Therefore, the results
of this study confirm that the EEMD method, which is
more effective for the decomposition of inter-annual scale
of climatic elements, can truly reflect the natural variation
characteristics of climatic elements.
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